目录

1 问题描述

2 解决方案

 


1 问题描述

1310 One-way traffic
In a certain town there are n intersections connected by two- and one-way streets. The town is very
modern so a lot of streets run through tunnels or viaducts. Of course it is possible to travel between
any two intersections in both ways, i.e. it is possible to travel from an intersection a to an intersection
b as well as from b to a without violating traffic rules. Because one-way streets are safer, it has been
decided to create as much one-way traffic as possible. In order not to make too much confusion it has
also been decided that the direction of traffic in already existing one-way streets should not be changed.
Your job is to create a new traffic system in the town. You have to determine the direction of
traffic for as many two-way streets as possible and make sure that it is still possible to travel both ways
between any two intersections.
Write a program that:
• reads a description of the street system in the town from the standard input,
• for each two-way street determines one direction of traffic or decides that the street must remain
two-way,
• writes the answer to the standard output.
Input
The first line of the input contains two integers n and m, where 2 ≤ n ≤ 2000 and n−1 ≤ m ≤ n(n−1)/2.
Integer n is the number of intersections in the town and integer m is the number of streets.
Each of the next m lines contains three integers a, b and c, where 1 ≤ a ≤ n, 1 ≤ b ≤ n, a ̸= b and
c belongs to {1, 2}. If c = 1 then intersections a and b are connected by an one-way street from a to
b. If c = 2 then intersections a and b are connected by a two-way street. There is at most one street
connecting any two intersections.
Output
The output contains exactly the same number of lines as the number of two-way streets in the input.
For each such street (in any order) the program should write three integers a, b and c meaning, the new
direction of the street from a to b (c = 1) or that the street connecting a and b remains two-way (c = 2).
If there are more than one solution with maximal number of one-way streets then your program should
output any of them but just one.
Sample Input
4 4
4 1 1
4 2 2
1 2 1
1 3 2 Sample Output
2 4 1
3 1 2

题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem&problem=4056


2 解决方案

首先看看关于图论的割点和桥的相关概念定义:

引用文末参考资料1:

1.割点:若删掉某点后,原连通图分裂为多个子图,则称该点为割点。

2.割点集合:在一个无向连通图中,如果有一个顶点集合,删除这个顶点集合,以及这个集合中所有顶点相关联的边以后,原图变成多个连通块,就称这个点集为割点集合。
3.点连通度:最小割点集合中的顶点数。
4.割边(桥):删掉它之后,图必然会分裂为两个或两个以上的子图。
5.割边集合:如果有一个边集合,删除这个边集合以后,原图变成多个连通块,就称这个点集为割边集合。
6.边连通度:一个图的边连通度的定义为,最小割边集合中的边数。
7.缩点:把没有割边的连通子图缩为一个点,此时满足任意两点之间都有两条路径可达。
注:求块<>求缩点。缩点后变成一棵k个点k-1条割边连接成的树。而割点可以存在于多个块中。
8.双连通分量:分为点双连通和边双连通。它的标准定义为:点连通度大于1的图称为点双连通图,边连通度大于1的图称为边双连通图。通俗地讲,满足任意两点之间,能通过两条或两条以上没有任何重复边的路到达的图称为双连通图。无向图G的极大双连通子图称为双连通分量。
 

具体代码如下:

package com.liuzhen.practice;

import java.util.ArrayList;
import java.util.Scanner;
import java.util.Stack; public class Main {
public static int n; //给定图的顶点数
public static int count; //记录遍历次序
public static int[] DFN;
public static int[] Low;
public static int[] parent; //parent[i] = j,表示顶点i的直接父母顶点为j
public static Stack<Integer> stack;
public static ArrayList<edge>[] map;
public static ArrayList<edge> ans; //存储最终输出结果 static class edge {
public int a; //边的起点
public int b; //边的终点
public int c; //c = 1表示单向边,c = 2表示双向边 public edge(int a, int b, int c) {
this.a = a;
this.b = b;
this.c = c;
}
} @SuppressWarnings("unchecked")
public void init() {
count = 0;
DFN = new int[n + 1];
Low = new int[n + 1];
parent = new int[n + 1];
stack = new Stack<Integer>();
map = new ArrayList[n + 1];
ans = new ArrayList<edge>();
for(int i = 1;i <= n;i++) {
DFN[i] = -1;
Low[i] = -1;
parent[i] = -1;
map[i] = new ArrayList<edge>();
}
} public void TarJan(int start, int father) {
DFN[start] = count++;
Low[start] = DFN[start];
parent[start] = father;
stack.push(start);
for(int i = 0;i < map[start].size();i++) {
edge temp = map[start].get(i);
int j = temp.b;
if(DFN[j] == -1) {
TarJan(j, start);
Low[start] = Math.min(Low[start], Low[j]);
if(temp.c == 2) {
if(Low[j] > DFN[start]) { //当边temp为割边(或者桥)时
ans.add(temp);
} else {
ans.add(new edge(temp.a, temp.b, 1));
}
}
} else if(j != parent[start]) { //当j不是start的直接父母节点时
Low[start] = Math.min(Low[start], DFN[j]);
if(temp.c == 2) {
ans.add(new edge(temp.a, temp.b, 1));
}
}
}
} public void getResult() {
for(int i = 1;i <= n;i++) {
if(parent[i] == -1)
TarJan(i, 0);
}
for(int i = 0;i < ans.size();i++)
System.out.println(ans.get(i).a+" "+ans.get(i).b+" "+ans.get(i).c);
} public static void main(String[] args) {
Main test = new Main();
Scanner in = new Scanner(System.in);
n = in.nextInt();
int k = in.nextInt();
test.init();
for(int i = 0;i < k;i++) {
int a = in.nextInt();
int b = in.nextInt();
int c = in.nextInt();
map[a].add(new edge(a, b, c));
if(c == 2)
map[b].add(new edge(b, a, c));
}
test.getResult();
}
}

运行结果:

4 4
4 1 1
4 2 2
1 2 1
1 3 2
2 4 1
1 3 2

参考资料:

1.图论-桥/割点/双连通分量/缩点/LCA

2. uva 1310 - One-way traffic(连通分量)

3.【图论】求无向连通图的割点

算法笔记_149:图论之桥的应用(Java)的更多相关文章

  1. 算法笔记_150:图论之双连通及桥的应用(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 Description In order to get from one of the F (1 <= F <= 5,000) graz ...

  2. 算法笔记_180:历届试题 国王的烦恼(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 C国由n个小岛组成,为了方便小岛之间联络,C国在小岛间建立了m座大桥,每座大桥连接两座小岛.两个小岛间可能存在多座桥连接.然而,由于海水冲 ...

  3. 算法笔记_139:二分图的最大权匹配(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 何为二分图的最大权匹配问题? 最大权二分匹配问题就是给二分图的每条边一个权值,选择若干不相交的边,得到的总权值最大. 2 解决方案 对于此问题的讲解 ...

  4. 算法笔记_133:最大连续乘积子数组(Java)

    目录 1 问题描述 2 解决方案 2.1 蛮力法 2.2 动态规划法   1 问题描述 给定一个浮点数组,任意取出数组中的若干个连续的数相乘,请找出其中乘积最大的子数组. 2 解决方案 2.1 蛮力法 ...

  5. 算法笔记_131:出现次数超过一半的数(Java)

    目录 1 问题描述 2 解决方案 2.1 每次删除两个不同的数 2.2 记录两个值   1 问题描述 数组中有一个数出现的次数超过了数组长度的一半,请找出这个数. 2 解决方案 2.1 每次删除两个不 ...

  6. 算法笔记_044:表达式计算求值(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 输入一个只包含加减乖除和括号的合法表达式,求表达式的值.其中除表示整除. 输入格式 输入一行,包含一个表达式. 输出格式 输出这个表达式的 ...

  7. 算法笔记_052:蓝桥杯练习Multithreading(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 现有如下一个算法: repeat ni times yi := y y := yi+1 end repeat 令n[1]为你需要算加法的第 ...

  8. 算法笔记_013:汉诺塔问题(Java递归法和非递归法)

    目录 1 问题描述 2 解决方案  2.1 递归法 2.2 非递归法 1 问题描述 Simulate the movement of the Towers of Hanoi Puzzle; Bonus ...

  9. 算法笔记_198:历届试题 打印十字图(Java)

    目录 1 问题描述 2 解决方案   1 问题描述 问题描述 小明为某机构设计了一个十字型的徽标(并非红十字会啊),如下所示: ..$$$$$$$$$$$$$....$...........$..$$ ...

随机推荐

  1. 【UOJ #107】【APIO 2013】ROBOTS

    http://uoj.ac/problem/107 设\(f(l,r,i,j)\)表示\([l,r]\)中的机器人聚集到\((i,j)\)需要花的最小操作数. \(f(l,r,i,j)=\min\le ...

  2. bzoj 4034: [HAOI2015]T2

    4034: [HAOI2015]T2 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操 ...

  3. 20162327WJH Android开发程序设计实验报告

    学号 20162327 <程序设计与数据结结构>Android开发程序设计实验报告 实验一:Android Stuidio的安装测试: 参考<Java和Android开发学习指南(第 ...

  4. [bzoj1017][JSOI2008]魔兽地图 DotR (Tree DP)【有待优化】

    Description DotR (Defense of the Robots) Allstars是一个风靡全球的魔兽地图,他的规则简单与同样流行的地图DotA (Defense of the Anc ...

  5. bzoj 2770 堆的中序遍历性质

    我们知道二叉搜索树的中序遍历是一个已经排好序的序列,知道序列我们无法确定树的形态(因为有多种). 但是,Treap如果告诉我们它的关键字以及权值,那么就可以唯一确定树的形态(Treap的O(logn) ...

  6. Unity Pivot/Center与Local/Global总结

    Untiy左上角有两个按钮  Pivot/Center 和 Local/Global  它们叫做 变换Gizmo工具 Pivot/Center:现实游戏对象的轴心参考点.Center为以所有选中物体所 ...

  7. nginx+php-fpm 配置和错误总结

    <strong>空白页面:</strong>需要这个参数: fastcgi_param SCRIPT_FILENAME $document_root$fastcgi_scrip ...

  8. 机器学习中的 precision、recall、accuracy、F1 Score

    1. 四个概念定义:TP.FP.TN.FN 先看四个概念定义: - TP,True Positive - FP,False Positive - TN,True Negative - FN,False ...

  9. Spring注入日期到bean属性-CustomDateEditor

    这一个Spring例子向您展示如何为bean属性注入一个“日期”. package com.yiibai.common; import java.util.Date; public class Cus ...

  10. ffmpeg的IO操作

    ffmpeg 可以通过IO操作将数据读取和存储在文件或网络中 作为数据的读取和写入地址,数据被存放在file,http, ffmpeg 不仅可以编解常用的音视频格式,还可以将数据导入/导出到各种媒介中 ...