MR案例:CombineFileInputFormat
CombineFileInputFormat是一个抽象类。Hadoop提供了两个实现类CombineTextInputFormat和CombineSequenceFileInputFormat。
此案例让我明白了三点:详见 解读:MR多路径输入 和 解读:CombineFileInputFormat类
- 对于单一输入路径情况:
//指定输入格式CombineFileInputFormat
job.setInputFormatClass(CombineTextInputFormat.class); //指定SplitSize
CombineTextInputFormat.setMaxInputSplitSize(job, 60*1024*1024L); //指定输入路径
CombineTextInputFormat.addInputPath(job, new Path(args[0]));
- 对于多路径输入情况①:
//指定输入格式CombineFileInputFormat
job.setInputFormatClass(CombineTextInputFormat.class); //指定SplitSize
CombineTextInputFormat.setMaxInputSplitSize(job, 60*1024*1024L); //指定输入路径(两个)
CombineTextInputFormat.addInputPath(job, new Path(args[0]));
CombineTextInputFormat.addInputPath(job, new Path(args[1]));
- 多路径输入情况②:
//指定SplitSize
CombineTextInputFormat.setMaxInputSplitSize(job, 60*1024*1024L); //指定输入路径,以及指定输入格式
MultipleInputs.addInputPath(job, new Path(args[0]), CombineTextInputFormat.class);
MultipleInputs.addInputPath(job, new Path(args[1]), CombineTextInputFormat.class);
细心观察,还会发现两种多路径输入① ②的区别:(已验证)
- 第一种方案:先把所有的输入集中起来求出总的输入大小,再除以SplitSize算出总的map个数
- 第二种方案:先分别算出每个MultipleInputs路径对应的map个数,再对两个MultipleInputs的map个数求和
完整的代码:
package test0820; import java.io.IOException; import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.VLongWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.Mapper;
import org.apache.hadoop.mapreduce.Reducer;
import org.apache.hadoop.mapreduce.lib.input.CombineTextInputFormat;
import org.apache.hadoop.mapreduce.lib.input.MultipleInputs;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount0826 { public static void main(String[] args) throws Exception {
Configuration conf = new Configuration();
Job job = Job.getInstance(conf);
job.setJarByClass(WordCount0826.class); job.setMapperClass(IIMapper.class);
job.setReducerClass(IIReducer.class);
job.setNumReduceTasks(5); job.setMapOutputKeyClass(Text.class);
job.setMapOutputValueClass(VLongWritable.class); job.setOutputKeyClass(Text.class);
job.setOutputValueClass(VLongWritable.class); //CombineFileInputFormat类
//job.setInputFormatClass(CombineTextInputFormat.class);
CombineTextInputFormat.setMaxInputSplitSize(job, 60*1024*1024L);
//CombineTextInputFormat.addInputPath(job, new Path(args[0]));
//CombineTextInputFormat.addInputPath(job, new Path(args[1])); MultipleInputs.addInputPath(job, new Path(args[0]), CombineTextInputFormat.class);
MultipleInputs.addInputPath(job, new Path(args[1]), CombineTextInputFormat.class);
FileOutputFormat.setOutputPath(job, new Path(args[2])); System.exit(job.waitForCompletion(true)? 0:1);
} //map
public static class IIMapper extends Mapper<LongWritable, Text, Text, VLongWritable>{
@Override
protected void map(LongWritable key, Text value,Context context)
throws IOException, InterruptedException { String[] splited = value.toString().split(" "); for(String word : splited){
context.write(new Text(word),new VLongWritable(1L));
}
}
} //reduce
public static class IIReducer extends Reducer<Text, VLongWritable, Text, VLongWritable>{
@Override
protected void reduce(Text key, Iterable<VLongWritable> v2s, Context context)
throws IOException, InterruptedException { long sum=0; for(VLongWritable vl : v2s){
sum += vl.get();
}
context.write(key, new VLongWritable(sum));
}
}
}
MR案例:CombineFileInputFormat的更多相关文章
- MR案例:小文件处理方案
HDFS被设计来存储大文件,而有时候会有大量的小文件生成,造成NameNode资源的浪费,同时也影响MapReduce的处理效率.有哪些方案可以合并这些小文件,或者提高处理小文件的效率呢? 1). 所 ...
- MR案例:Reduce-Join
问题描述:两种类型输入文件:address(地址)和company(公司)进行一对多的关联查询,得到地址名(例如:Beijing)与公司名(例如:Beijing JD.Beijing Red Star ...
- MR案例:倒排索引
1.map阶段:将单词和URI组成Key值(如“MapReduce :1.txt”),将词频作为value. 利用MR框架自带的Map端排序,将同一文档的相同单词的词频组成列表,传递给Combine过 ...
- MR案例:倒排索引 && MultipleInputs
本案例采用 MultipleInputs类 实现多路径输入的倒排索引.解读:MR多路径输入 package test0820; import java.io.IOException; import j ...
- MR案例:输出/输入SequenceFile
SequenceFile文件是Hadoop用来存储二进制形式的key-value对而设计的一种平面文件(Flat File).在SequenceFile文件中,每一个key-value对被看做是一条记 ...
- MR案例:分区和排序
现有一学生成绩数据,格式如下:<学号,姓名,学院,成绩> //<id, name, institute, grade>. 需求描述:查询成绩大于等于60分的学生数据,按学院分 ...
- MR案例:链式ChainMapper
类似于Linux管道重定向机制,前一个Map的输出直接作为下一个Map的输入,形成一个流水线.设想这样一个场景:在Map阶段,数据经过mapper01和mapper02处理:在Reduce阶段,数据经 ...
- MR案例:定制InputFormat
数据输入格式 InputFormat类用于描述MR作业的输入规范,主要功能:输入规范检查(比如输入文件目录的检查).对数据文件进行输入切分和从输入分块中将数据记录逐一读取出来.并转化为Map的输入键值 ...
- MR案例:基站相关01
字段解释: product_no:用户手机号: lac_id:用户所在基站: start_time:用户在此基站的开始时间: staytime:用户在此基站的逗留时间. product_no lac_ ...
随机推荐
- 170330、Spring中你不知道的注入方式
前言 在Spring配置文件中使用XML文件进行配置,实际上是让Spring执行了相应的代码,例如: 使用<bean>元素,实际上是让Spring执行无参或有参构造器 使用<prop ...
- 160303、js加密跟后台加密对应
md5.js var hexcase = 0; var b64pad = ""; var chrsz = 8; function hex_md5(s){ return binl2h ...
- Linux 磁盘管理的命令
Linux 磁盘管理 磁盘分区及挂载: 先查询系统的使用情况: 使用fdisk -l语句 查询结果: 进行磁盘的新建:***添加磁盘时系统必须处于关机状态** 在进行对系统磁盘的使用情况的查询 查 ...
- Elasticsearch 中文分词(elasticsearch-analysis-ik) 安装
由于elasticsearch基于lucene,所以天然地就多了许多lucene上的中文分词的支持,比如 IK, Paoding, MMSEG4J等lucene中文分词原理上都能在elasticsea ...
- 透明 Transparent connections through HTTP proxies.
透明语境: 5.7层模型中数据链路层:透明传输: 谈谈如何使用Netty开发实现高性能的RPC服务器 - Newland - 博客园 http://www.cnblogs.com/jietang/p/ ...
- 解Bug之路-TCP粘包Bug
解Bug之路-TCP粘包Bug - 无毁的湖光-Al的个人空间 - 开源中国 https://my.oschina.net/alchemystar/blog/880659 解Bug之路-TCP粘包Bu ...
- windows 下 方便工作的bat文件批处理命令
1.删除目录下 不包含某串字符的文件: @echo offfor /f "delims=" %%a in ('dir /s /a-d/b *.mp3') do ( echo &qu ...
- 解决MySQL数据库同步1236错误
1.报错如下: Got fatal error from master when reading data from binary log: 'The slave is connecting usin ...
- Flask之基本使用与配置
简介 Flask是一个基于Python开发并且依赖jinja2模板和Werkzeug WSGI服务的一个微型框架,对于Werkzeug本质是Socket服务端,其用于接收http请求并对请求进行预处理 ...
- ansible(1)
一.初识ansible 1.准备工作: 准备四台干净的虚拟机,如下: 192.168.133.129(主控节点,下面三个为被控节点) 192.168.133.130 192.168.133.131 1 ...