D. Sum of Medians

Time Limit: 1 Sec  Memory Limit: 256 MB

题目连接

http://codeforces.com/problemset/problem/85/D

Description

In one well-known algorithm of finding the k-th order statistics we should divide all elements into groups of five consecutive elements and find the median of each five. A median is called the middle element of a sorted array (it's the third largest element for a group of five). To increase the algorithm's performance speed on a modern video card, you should be able to find a sum of medians in each five of the array.

A sum of medians of a sorted k-element set S = {a1, a2, ..., ak}, where a1 < a2 < a3 < ... < ak, will be understood by as

The operator stands for taking the remainder, that is stands for the remainder of dividing x by y.

To organize exercise testing quickly calculating the sum of medians for a changing set was needed.

Input

The first line contains number n (1 ≤ n ≤ 105), the number of operations performed.

Then each of n lines contains the description of one of the three operations:

  • add x — add the element x to the set;
  • del x — delete the element x from the set;
  • sum — find the sum of medians of the set.

For any add x operation it is true that the element x is not included in the set directly before the operation.

For any del x operation it is true that the element x is included in the set directly before the operation.

All the numbers in the input are positive integers, not exceeding 109.

 

Output

For each operation sum print on the single line the sum of medians of the current set. If the set is empty, print 0.

Please, do not use the %lld specificator to read or write 64-bit integers in C++. It is preferred to use the cin, cout streams (also you may use the %I64d specificator).

 

Sample Input

6
add 4
add 5
add 1
add 2
add 3
sum

Sample Output

3

HINT

题意

给你一堆数,然后排序,然后让你输出下标mod5=3的和

题解:

用vector来做,虽然感觉有很多数据结构都可以把这道题秒了

代码:

//qscqesze
#include <cstdio>
#include <cmath>
#include <cstring>
#include <ctime>
#include <iostream>
#include <algorithm>
#include <set>
#include <vector>
#include <sstream>
#include <queue>
#include <typeinfo>
#include <fstream>
#include <map>
#include <stack>
typedef long long ll;
using namespace std;
//freopen("D.in","r",stdin);
//freopen("D.out","w",stdout);
#define sspeed ios_base::sync_with_stdio(0);cin.tie(0)
#define maxn 200001
#define mod 10007
#define eps 1e-9
int Num;
char CH[];
//const int inf=0x7fffffff; //нчоч╢С
const int inf=0x3f3f3f3f;
/* inline void P(int x)
{
Num=0;if(!x){putchar('0');puts("");return;}
while(x>0)CH[++Num]=x%10,x/=10;
while(Num)putchar(CH[Num--]+48);
puts("");
}
*/
//**************************************************************************************
inline ll read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
inline void P(int x)
{
Num=;if(!x){putchar('');puts("");return;}
while(x>)CH[++Num]=x%,x/=;
while(Num)putchar(CH[Num--]+);
puts("");
} vector<int> s;
int main()
{
char a[];
int b;
int n=read();
for(int i=;i<n;i++)
{
scanf("%s",a);
if(a[]=='a')
{
scanf("%d",&b);
s.insert(lower_bound(s.begin(),s.end(),b),b);
}
if(a[]=='d')
{
scanf("%d",&b);
s.erase(lower_bound(s.begin(),s.end(),b));
}
if(a[]=='s')
{
ll sum=;
for(int j=;j<s.size();j+=)
sum+=s[j];
printf("%lld\n",sum);
}
}
}

codeforces 85D D. Sum of Medians Vector的妙用的更多相关文章

  1. codeforces 85D D. Sum of Medians 线段树

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  2. Codeforces 85 D. Sum of Medians

    题目链接:http://codeforces.com/contest/85/problem/D 做法果然男默女泪啊..... 大概就是直接开了一个$vector$每次插入删除都用自带的$insert$ ...

  3. Codeforces 85D Sum of Medians(线段树)

    题目链接:Codeforces 85D - Sum of Medians 题目大意:N个操作,add x:向集合中加入x:del x:删除集合中的x:sum:将集合排序后,将集合中全部下标i % 5 ...

  4. Codeforces 85D Sum of Medians

    传送门 D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standa ...

  5. 数据结构(线段树):CodeForces 85D Sum of Medians

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

  6. CodeForces 85D Sum of Medians Splay | 线段树

    Sum of Medians 题解: 对于这个题目,先想到是建立5棵Splay,然后每次更新把后面一段区间的树切下来,然后再转圈圈把切下来的树和别的树合并. 但是感觉写起来太麻烦就放弃了. 建立5棵线 ...

  7. 85D Sum of Medians

    传送门 题目 In one well-known algorithm of finding the k-th order statistics we should divide all element ...

  8. Yandex.Algorithm 2011 Round 1 D. Sum of Medians 线段树

    题目链接: Sum of Medians Time Limit:3000MSMemory Limit:262144KB 问题描述 In one well-known algorithm of find ...

  9. Coderforces 85 D. Sum of Medians(线段树单点修改)

    D. Sum of Medians time limit per test 3 seconds memory limit per test 256 megabytes input standard i ...

随机推荐

  1. 【swupdate文档 五】从可信的来源更新镜像

    从可信的来源更新镜像 现在越来越重要的是,设备不仅要能安全地进行更新操作, 而且要能够验证发送的图像是否来自一个已知的源, 并且没有嵌入恶意软件. 为了实现这个目标,SWUpdate必须验证传入的镜像 ...

  2. Linux中fork()函数的底层实现【转】

    转自:http://blog.csdn.net/duoru_xiong/article/details/76358812 1. fork(),vfork(),clone()的区别 这三个系统调用的底层 ...

  3. http状态码说明

    在学习网页设计的时候都应该知道状态码,但我们常见的状态码都是200,404,下面介绍其他的状态值 1开头的http状态码表示临时响应并需要请求者继续执行操作的状态代码. 100   (继续) 请求者应 ...

  4. ajax跨域的解决办法

    <!DOCTYPE HTML> <html> <head> <meta http-equiv="content-type" content ...

  5. spring源码解析--事务篇(前篇)

    对于每一个JAVA程序员,spring应该是再熟悉不过的框架了,它的功能有多强大我就不多说了,既然他有这么强大的功能,是如何实现的呢?这个就需要从他的原理去了解,而最直接了解原理的方式莫过于源码.当然 ...

  6. Linux下软件的安装与管理

    1.源码安装方式 2.RPM包方式安装 3.yum安装方式 4.二进制软件安装方式 1.源码安装方式 (1)下载.解压Apache源码: mkdir /apache #在根目录下创建一个apache目 ...

  7. beego学习笔记(4):开发文档阅读(3)

    通过运行 bee new quickstart 来创建新的项目,其结构如下: quickstart |-- conf | `-- app.conf |-- controllers | `-- defa ...

  8. C++的一大误区——深入解释直接初始化与复制初始化的区别

      转自:http://blog.csdn.net/ljianhui/article/details/9245661 不久前,在博客上发表了一篇文章——提高程序运行效率的10个简单方法,对于其中最后一 ...

  9. yii2联表查询

    我们用实例来说明这一部分 表结构 现在有客户表.订单表.图书表.作者表, 客户表Customer   (id  customer_name) 订单表Order          (id  order_ ...

  10. C# 6.0 新特性 (二)

    自动属性初始化表达式 有过正确实现结构经验的所有 .NET 开发人员无疑都为一个问题所困扰:需要使用多少语法才能使类型固定不变(为 .NET 标准建议的类型).此问题实际上是只读属性存在的问题: 定义 ...