国内博客,上介绍实现的K-medodis方法为:

与K-means算法类似。只是距离选择与聚类中心选择不同。

距离为曼哈顿距离

聚类中心选择为:依次把一个聚类中的每一个点当作当前类的聚类中心,求出代价值最小的点当作当前聚类中心。

维基百科上,实现的方法为PAM算法。

分成K类,把每个点都尝试当作聚类中心,并求出当前组合聚类中心点组合的代价值。找到总最小代价值的中心点。

国内实现:

kMedoids.m代码:

function [cx,cost] = kMedoids(K,data,num)
% 生成将data聚成K类的最佳聚类
% K为聚类数目,data为数据集,num为随机初始化次数
[cx,cost] = kMedoids1(K,data);
for i = 2:num
[cx1,min] = kMedoids1(K,data);
if min<cost
cost = min;
cx = cx1;
end
end
end function [cx,cost] = kMedoids1(K,data)
% 把分类数据集data聚成K类
% [cx,cost] = kmeans(K,data)
% K为聚类数目,data为数据集
% cx为样本所属聚类,cost为此聚类的代价值
% 选择需要聚类的数目 % 随机选择聚类中心
centroids = data(randperm(size(data,1),K),:);
% 迭代聚类
centroids_temp = zeros(size(centroids));
num = 0;
while (~isequal(centroids_temp,centroids)&&num<20)
centroids_temp = centroids;
[cx,cost] = findClosest(data,centroids,K);
centroids = compueCentroids(data,cx,K);
num = num+1;
end
% cost = cost/size(data,1); end function [cx,cost] = findClosest(data,centroids,K)
% 将样本划分到最近的聚类中心
cost = 0;
n = size(data,1);
cx = zeros(n,1);
for i = 1:n
% 曼哈顿距离
[M,I] = min(sum(abs((data(i,:)-centroids))'));
cx(i) = I;
cost = cost+M;
end
end function centroids = compueCentroids(data,cx,K)
% 计算新的聚类中心
centroids = zeros(K,size(data,2));
for i = 1:K
% 寻找代价值最小的当前聚类中心
temp = data((cx==i),:);
[~,I] = min(sum(squareform(pdist(temp))));
centroids(i,:) = temp(I,:);
end
end

Main.m

% 主函数

% 生成符合高斯分布的数据
mu = [5,5];
sigma = [16,0;0,16];
sigma1 = [0.5,0;0,0.5];
data = gaussianSample(8,50,mu,sigma,sigma1); % 聚类
K = 6;
[cx,cost] = kMedoids(K,data,10);
plotMedoids(data,cx,K);

执行Main.m结果为:

K-medodis聚类算法MATLAB的更多相关文章

  1. 密度峰值聚类算法MATLAB程序

    密度峰值聚类算法MATLAB程序 凯鲁嘎吉 - 博客园 http://www.cnblogs.com/kailugaji/ 密度峰值聚类算法简介见:[转] 密度峰值聚类算法(DPC) 数据见:MATL ...

  2. k均值聚类算法原理和(TensorFlow)实现

    顾名思义,k均值聚类是一种对数据进行聚类的技术,即将数据分割成指定数量的几个类,揭示数据的内在性质及规律. 我们知道,在机器学习中,有三种不同的学习模式:监督学习.无监督学习和强化学习: 监督学习,也 ...

  3. K均值聚类算法

    k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个 ...

  4. 机器学习实战---K均值聚类算法

    一:一般K均值聚类算法实现 (一)导入数据 import numpy as np import matplotlib.pyplot as plt def loadDataSet(filename): ...

  5. K均值聚类算法的MATLAB实现

    1.K-均值聚类法的概述    之前在参加数学建模的过程中用到过这种聚类方法,但是当时只是简单知道了在matlab中如何调用工具箱进行聚类,并不是特别清楚它的原理.最近因为在学模式识别,又重新接触了这 ...

  6. 基于改进人工蜂群算法的K均值聚类算法(附MATLAB版源代码)

    其实一直以来也没有准备在园子里发这样的文章,相对来说,算法改进放在园子里还是会稍稍显得格格不入.但是最近邮箱收到的几封邮件让我觉得有必要通过我的博客把过去做过的东西分享出去更给更多需要的人.从论文刊登 ...

  7. K-modes聚类算法MATLAB

    K-modes算法主要用于分类数据,如 国籍,性别等特征. 距离使用汉明距离,即有多少对应特征不同则距离为几. 中心点计算为,选择众数作为中心点. 主要功能: 随机初始化聚类中心,计算聚类. 选择每次 ...

  8. K-means聚类算法MATLAB

    以K-means算法为例,实现了如下功能 自动生成符合高斯分布的数据,函数名为gaussianSample.m 实现多次随机初始化聚类中心,以找到指定聚类数目的最优聚类.函数名myKmeans.m 自 ...

  9. 谱聚类算法—Matlab代码

    % ========================================================================= % 算 法 名 称: Spectral Clus ...

随机推荐

  1. C++中数字和字符串的转换

    1.字符串数字之间的转换 (1)string --> char *   string str("OK");   char * p = str.c_str(); (2)char ...

  2. window.parent.document解决原生js或jQuery 实现父窗口的问题

    做WEB前端开发的过程中,经常会有这样的需求,用户点击[编辑]按钮,弹出一个对话框,在里边修改相应的值,然后把修改后的值显示在原页面,最后点击保存. 用window.parent.document.g ...

  3. SQL简明教程系列15 创建索引

    CREATE INDEX用于在表中创建索引. 索引使数据库应用程序可以更快地查找数据. 注:更新一个包含索引的表比更新一个没有索引的表更多的时间,这是由于索引本身也需要更新.因此,理想的做法是仅仅在常 ...

  4. 在Javascript弹出窗口中输入换行符

    private void showMessage(string strMsg) { Page.RegisterStartupScript("scriptStr", "&l ...

  5. Android性能测试框架Emmagee

    目前移动设备,尤其是Android设备,相对于过去的J2me时代,硬件有大幅度的提高,并且更新地非常快,可以安装和运行更多的应用. 但是目前安卓市场对于应用的要求并不如苹果商店那么严格,Android ...

  6. [Java] 一种好的JAVA分页实现

    喃都不说了,贴代码,意思都在代码里面了 Page.java //分页类.定义分页字段信息,供前台页面使用 package com.core.common; import java.util.List; ...

  7. android system.img 解压和打包

    system.img重新编译的时间太长,添加和更改的文件系统内容,往往通过对system.img加压再打包的方式. 参考链接 http://blog.csdn.net/whu_zhangmin/art ...

  8. 那么类 Man 可以从类 Human 派生,类 Boy 可以从类 Man 派生

    若在逻辑上 B 是 A 的“一种”(a kind of ),则允许 B 继承 A 的功 能和属性. 例如男人(Man)是人(Human)的一种,男孩(Boy)是男人的一种. 那么类 Man 可以从类 ...

  9. React 创建自己定义控件

    React是Facebook的内部项目,当时facebook对自己市面上全部的javascript MVC都不惬意,于是就自己创建了一个新的框架.发现还挺好用.于是就开源了,这就是React. Rea ...

  10. c#并行扫描端口控制台程序

    static void Main(string[] args) { Console.WriteLine("请输入ip"); string ip = Console.ReadLine ...