《剑指offer》— JavaScript(9)变态跳台阶
变态跳台阶
题目描述
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
实现代码
function jumpFloor(number)
{
if (number<0){
return -1;
}else if(number <=2){
return number
}
var arr = [];
arr[0] = 1;
arr[1] = 1;
for(var i = 2; i <= number; i++) {
arr[i] = 2*arr[i - 1];
}
return arr[number];
}
思路一
延续前一篇文章的思路:
- 假定第一次跳的是n阶,那么剩下的是0个台阶,跳法是f(0)=1;
- 假定第一次跳的是(n-1)阶,那么剩下的是1个台阶,跳法是f(1)=1;
... ... - 假定第一次跳的是1阶,那么剩下的是(n-1)个台阶,跳法是f(n-1);
- 以此类推, 由假设得出总跳法为:f(n)=f(n-1)+f(n-2)+···+f(1)+f(0);
- 由于f(n-1)=f(0)+f(1)+···f(n-2),
因此f(n)=(f(0)+f(1)+···f(n-2))+f(n-1)=f(n-1)+f(n-1); - 由此可得
n=1, f(n)=1
n>1,且为整数, f(n)=2*f(n-1)
思路二
每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后一个台阶必须跳。所以共用2^(n-1)中情况
function jumpFloorII(number)
{
if(number === 0 ){
return -1;
}else{
return Math.pow(2,number-1);
}
}
《剑指offer》— JavaScript(9)变态跳台阶的更多相关文章
- 【剑指offer】09-3变态跳台阶
原创博文,转载请注明出处! # 本文是牛客网<剑指offer>刷题笔记,笔记索引连接 1.题目 # 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的 ...
- 剑指offer 09:变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. /* f(n-1) = f(n-2) + f(n-3) + ... + f(0 ...
- 剑指offer九之变态跳台阶
一.题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路 1.关于本题,前提是n个台阶会有一次n阶的跳法.分析如下: f(1) ...
- 剑指offer 11:变态跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 解法:使用数学归纳法可得,跳n级台阶的跳法一共有f(n)=2n-1中,即本 ...
- 剑指Offer - 九度1388 - 跳台阶
剑指Offer - 九度1388 - 跳台阶2013-11-24 03:43 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包 ...
- 【剑指Offer】10- II. 青蛙跳台阶问题 解题报告(Python & C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 个人微信公众号:负雪明烛 目录 题目描述 解题方法 动态规划 日期 题目地址:https: ...
- 【剑指offer】8:跳台阶
题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路: 这种题目多为找规律求通用公式并最终用代码实现. 首先,考 ...
- 剑指offer(8)跳台阶
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目分析 题目很简单,稍微分析就知道这是斐波那契数列,所以可以动态规划来做 a.如果两种跳法,1阶 ...
- 【剑指Offer】8、跳台阶
题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路: 首先考虑最简单的情况,如果只有1级台阶, ...
- 剑指offer9:青蛙变态跳台阶,1,2,3……,n。
1. 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 2. 思路和方法 每个台阶都有跳与不跳两种情况(除了最后一个台阶),最后 ...
随机推荐
- 自动化运维工具saltstack01 -- 之SaltStack介绍、安装与基础使用
SaltStack介绍 官网地址:http://www.saltstack.com 官方文档地址:http://docs.saltstack.com Github:http://Github.com/ ...
- 人脸辨识,用树莓派Raspberry Pi实现舵机云台追踪脸孔
影像辨识作为近年最热门的专业技术之一,广泛用于智慧监视器.车电监控.智慧工厂.生物医疗电子等等:其中,人脸辨识是一个很重要的部分,网络上已经有相当多的资源可供下载使用:于是我们使用舵机云台作为镜头旋转 ...
- MAC终端安装指定版本node
MAC终端安装指定版本node 安装brew 终端上运行 $ /usr/bin/ruby -e “$(curl -fsSL https://raw.githubusercontent.com/Home ...
- 【MySQL 数据库】MySQL目录
目录 [第一章]MySQL数据概述 [第二章]MySQL数据库基于Centos7.3-部署 [MySQL解惑笔记]Centos7下卸载彻底MySQL数据库 [MySQL解惑笔记]忘记MySQL数据库密 ...
- libCurl 初步认识 - cur easy
cur easy接口简洁明了,主接口4个,辅接口5个. 主接口 初始化 + 配参数 + 执行 + 销毁 初始化 CURL* curl_easy_init() 获得CURL句柄,返回值需要判空. 配参数 ...
- PSP DAILY的NABCD分析
1) N (Need 需求) PSP Daily 解决了用户(软件工程课上学生)记录例行报告.写每周PSP表格和统计的需求.潜在用户还有未来该课堂的学生和需要用PSP方法记录任务完成时间和统计的学习者 ...
- windows环境下nginx服务器的安装与配置
转载至:http://www.cnblogs.com/hxxy2003/archive/2012/09/20/2695254.html nginx服务器是一个高性能的HTTP和反向代理服务器,它以稳定 ...
- .net web 应用程序C#
简介 开发环境:VS2015 ASP.NET:可以开发出几乎所有运行在Windows上的应用程序:.NET是一种架构,一种新的API:引入程序集代替DLL: ADO.NET:一组.NET组件提供对数据 ...
- UserAgent 设置 php 抓取网页
转载:http://www.webkaka.com/tutorial/php/2013/111846/ hp抓取网页,可谓轻而易举,几行代码就可以搞定.不过,如果你有所疏忽,程序写得不够严密,就会出现 ...
- rxjs5.X系列 —— ErrorHandling/Condition/Mathematical系列 api 笔记
欢迎指导与讨论 : ) 前言 本文是笔者翻译 RxJS 5.X 官网各类operation操作系列的的第四篇 —— ErrorHanding异常处理.Condition Operator情况操作.Ma ...