据大佬说,\(Splay\)是序列操作之王。\(Splay\)是一种平衡树,通过伸展(\(Splay\)),在不改变中序遍历的前提下变换根的位置,从而快速的进行序列操作

\(Splay\)最常见的序列操作是序列反转了:给定一段区间\([L,R]\),要求反转这一段区间

一次\(Splay\)操作复杂度:均摊\(O(\log\ N)\)

一般情况下:我们对一段区间这样操作:选定\(L - 1\)这个节点,Splay到\(root\),因为\(R\)在\(L\)右边,所以现在\(R\)一定在根(\(L- 1\))的右子树内。

此时我们再选定\(R + 1\)这个节点,将其Splay到根的右儿子处,因为满足BST性质(这里满足BST的不是值的大小而是区间的编号大小),\(R + 1\)这一节点的左子树就是需要操作的区间(依据BST,这个子树的内所有节点编号比\(R + 1\)小,比\(L - 1\)大,即\(\in[L,R]\) ).

于是我们参考线段树的\(lazy\)属性,让这个节点代表一整棵树,打上标记需要时再具体修改即可。


几个基本操作

\(Splay\)

若一条折线则转两次自己,直线则转完爸爸再转自己,要是还差一个点到目标则只转一次,以便使\(Splay\)保持平衡(这里的平衡和Treap的平衡不一样)

bool lor(int id){return id == ch[fa[id]][0] ? 0 : 1;}
void spin(int id){
int F = fa[id], d = lor(id);//爸爸,和爸爸的关系
fa[id] = fa[F];//夺取爸爸的权威,(原则:先平等在贬职)
if(fa[F])ch[fa[F]][lor(F)] = id;//接受爷爷的认可 && 保证0号点没有儿子
fa[F] = id;//现在我是爸爸的爸爸了
ch[F][d] = ch[id][d ^ 1];//爸爸的新儿子
if(ch[F][d])fa[ch[F][d]] = F;//保证0号点没有爸爸
ch[id][d ^ 1] = F;//爸爸比我大,去另一边
pushup(F), pushup(id);
}
void splay(int id, int goal){//操作节点和目标节点的爸爸
while(fa[id] != goal){//直到爸爸是目标节点的爸爸为止(成为目标为止)
int F = fa[id];
if(fa[F] == goal)spin(id);//爷爷是目标爸爸,则目标就为爸爸
else if(lor(id) ^ lor(F))spin(id),spin(id);//折线两次自己
else spin(F),spin(id);//直线先爸爸在自己
}
if(!goal)root = id;//由于我们判断的是目标的爸爸,所以不会动根,当目标是根的爸爸(虚节点)的时候变一下根
}

\(find \ \&\ insert\)

注意\(find\)在区间操作中返回编号和\(insert\)完\(Splay\)到\(root\)以维护\(Splay\)的平衡性即可

int find(int id, int rank){
pushdown(id);
if(size[ch[id][0]] >= rank)return find(ch[id][0], rank);
else if(size[ch[id][0]] + 1 == rank)return id;//注意返回编号而不是值
else return find(ch[id][1], rank - size[ch[id][0]] - 1);
}
void insert(int &id, int F, int v){
if(!id){id = New(v, F);splay(id, 0);return ;}//每插入一个点要把他Splay到根
if(v < val[id])insert(ch[id][0], id, v);
else insert(ch[id][1], id, v);
}

\(Reverse\)

注意添加哨兵节点后每个节点 $ + 1$即可

void Reverse(int l,int r){
int x = find(root, l),y = find(root, r + 2);//哨兵节点,所以区间加一
splay(x,0);splay(y,root);
lazy[ch[ch[root][1]][0]] ^= 1;
}

P3391 【模板】文艺平衡树(Splay)

题目背景

这是一道经典的Splay模板题——文艺平衡树。

题目描述

您需要写一种数据结构(可参考题目标题),来维护一个有序数列,其中需要提供以下操作:翻转一个区间,例如原有序序列是5 4 3 2 1,翻转区间是[2,4]的话,结果是5 2 3 4 1

输入输出格式

输入格式:

第一行为n,m n表示初始序列有n个数,这个序列依次是 (1,2, \cdots n-1,n)(1,2,⋯n−1,n) m表示翻转操作次数

接下来m行每行两个数 [l,r][l,r] 数据保证 1 \leq l \leq r \leq n 1≤l≤r≤n

输出格式:

输出一行n个数字,表示原始序列经过m次变换后的结果


一棵二叉树中,翻转即为树内所有左右节点翻转

在这一题中,我们需要翻转区间。参考上面的分析,我们可以给树上节点打上一个\(lazy\)来表示区间是否应该翻转,若有翻转,则交换自己的左右儿子,同时下放懒标记即可

有几点注意事项:

区间修改万一包括最左(右)节点,我们没有更左(右)节点能\(Splay\)到根或者根的右儿子节点,所以我们需要增加两个哨兵节点表示\(-Inf\)和\(INF\)来防止RE。

我的\(Splay\)和别人的不太一样,有些人Splay的第二个参数是目标节点,而我那个版本是目标节点的爸爸,为了防止出现bug,\(0\)号节点(根的爸爸,也称为虚点)不能有儿子或父亲,所以维护儿子父亲的时候记的判断一下

这个版本的\(Splay\)时没有涉及根节点的交换转移,所以每次\(Splay\)玩需要判断一下:若目标节点是根节点,则手动换一下根

Code

#include<iostream>
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
#include<climits>
typedef long long LL;
using namespace std;
int RD(){
int out = 0,flag = 1;char c = getchar();
while(c < '0' || c >'9'){if(c == '-')flag = -1;c = getchar();}
while(c >= '0' && c <= '9'){out = out * 10 + c - '0';c = getchar();}
return flag * out;
}
const int maxn = 100019,INF = 1e9;
int ch[maxn][2];
int val[maxn], lazy[maxn];
int size[maxn];
int fa[maxn];
int root, tot;
int New(int F,int v){
fa[++tot] = F;
size[tot] = 1;
lazy[tot] = 0;
val[tot] = v;
return tot;
}
void pushup(int id){size[id] = size[ch[id][0]] + size[ch[id][1]] + 1;}
void pushdown(int id){
if(lazy[id]){
swap(ch[id][0], ch[id][1]);
lazy[ch[id][0]] ^= 1;
lazy[ch[id][1]] ^= 1;
lazy[id] = 0;
}
}
bool lor(int id){return id == ch[fa[id]][0] ? 0 : 1;}
void spin(int id){
int F = fa[id], d = lor(id);//爸爸,和爸爸的关系
fa[id] = fa[F];//夺取爸爸的权威,(原则:先平等在贬职)
if(fa[F])ch[fa[F]][lor(F)] = id;//接受爷爷的认可 && 保证0号点没有儿子
fa[F] = id;//现在我是爸爸的爸爸了
ch[F][d] = ch[id][d ^ 1];//爸爸的新儿子
if(ch[F][d])fa[ch[F][d]] = F;//保证0号点没有爸爸
ch[id][d ^ 1] = F;//爸爸比我大,去另一边
pushup(F), pushup(id);
}
void splay(int id, int goal){//操作节点和目标节点的爸爸
while(fa[id] != goal){//直到爸爸是目标节点的爸爸为止(成为目标为止)
int F = fa[id];
if(fa[F] == goal)spin(id);//爷爷是目标爸爸,则目标就为爸爸
else if(lor(id) ^ lor(F))spin(id),spin(id);//折线两次自己
else spin(F),spin(id);//直线先爸爸在自己
}
if(!goal)root = id;//由于我们判断的是目标的爸爸,所以不会动根,当目标是根的爸爸(虚节点)的时候变一下根
}
int find(int id, int rank){
pushdown(id);
if(size[ch[id][0]] >= rank)return find(ch[id][0], rank);
else if(size[ch[id][0]] + 1 == rank)return id;
else return find(ch[id][1], rank - size[ch[id][0]] - 1);
}
void insert(int &id, int F, int v){
if(!id){id = New(v, F);splay(id, 0);return ;}//每插入一个点要把他Splay到根
if(v < val[id])insert(ch[id][0], id, v);
else insert(ch[id][1], id, v);
}
void Reverse(int l,int r){
int x = find(root, l),y = find(root, r + 2);//哨兵节点,所以区间加一
splay(x,0);splay(y,root);
lazy[ch[ch[root][1]][0]] ^= 1;
}
int num,nr;
int main(){
num = RD();nr = RD();
for(int i = 0;i <= num + 1;i++)insert(root, 0, i);
for(int i = 1;i <= nr;i++){
int l = RD(),r = RD();
Reverse(l,r);
}
for(int i = 1;i <= num;i++)printf("%d ",val[find(root,i + 1)]);
return 0;
}

Splay 区间操作的更多相关文章

  1. P2596 [ZJOI2006]书架 && Splay 区间操作(三)

    P2596 [ZJOI2006]书架 题目描述 小T有一个很大的书柜.这个书柜的构造有些独特,即书柜里的书是从上至下堆放成一列.她用1到n的正整数给每本书都编了号. 小T在看书的时候,每次取出一本书, ...

  2. P2042 [NOI2005]维护数列 && Splay区间操作(四)

    到这里 \(A\) 了这题, \(Splay\) 就能算入好门了吧. 今天是个特殊的日子, \(NOI\) 出成绩, 大佬 \(Cu\) 不敢相信这一切这么快, 一下子机房就只剩我和 \(zrs\) ...

  3. HDU 1754 I Hate It (Splay 区间操作)

    题目大意 维护一个序列,支持两种操作 操作一:将第x个元素的值修改为y 操作二:询问区间[x,y]内的元素的最大值 解题分析 splay的区间操作,事先加入两个编号最小和最大的点防止操作越界. 具体的 ...

  4. 「BZOJ1251」序列终结者 (splay 区间操作)

    题面: 1251: 序列终结者 Time Limit: 20 Sec  Memory Limit: 162 MBSubmit: 5367  Solved: 2323[Submit][Status][D ...

  5. Splay 区间操作(二)

    首先基本操作如下: 删除第rank个点 void Remove(int id){//删除第rank个点 rank++; int x = find(root, rank - 1); splay(x, 0 ...

  6. [bzoj1500][NOI2005 维修数列] (splay区间操作)

    Description Input 输入的第1 行包含两个数N 和M(M ≤20 000),N 表示初始时数列中数的个数,M表示要进行的操作数目. 第2行包含N个数字,描述初始时的数列. 以下M行,每 ...

  7. Splay 的区间操作

    学完Splay的查找作用,发现和普通的二叉查找树没什么区别,只是用了splay操作节省了时间开支. 而Splay序列之王的称号可不是白给的. Splay真正强大的地方是他的区间操作. 怎么实现呢? 我 ...

  8. HDU 4453:Looploop(Splay各种操作)

    http://acm.hdu.edu.cn/showproblem.php?pid=4453 题意:很多种操作:1.add x,将从光标起的 k2 个数全部加上 x:2.reverse,将从光标起的 ...

  9. 算法模板——splay区间反转 2

    实现功能:同splay区间反转 1(基于BZOJ3223 文艺平衡树) 这次改用了一个全新的模板(HansBug:琢磨了我大半天啊有木有),大大简化了程序,同时对于splay的功能也有所完善 这里面没 ...

随机推荐

  1. eos对数据库的操作

    eosio的multi_index 概述 multi_index是eosio上的数据库管理接口,通过eosio::multi_index智能合约能够写入.读取和修改eosio数据库的数据 multi_ ...

  2. drupal CVE-2018-7600 复现

    1.系统环境 Drupal 8.5 linux 主机 ruby 代码 2.原理说明 影响版本 Drupal 6.x,7.x,8.x 参考:CVE-2018-7600漏洞分析 3.利用 在Python2 ...

  3. BVT、EVT、DVT、PVT产品开发几个阶段

      EVT EVT(Engineering Verification Test) 工程验证 产品开发初期的设计验证.设计者实现样品时做初期的测试验证,包括 功能和安规测试,一般由 RD(Researc ...

  4. 为phpStorm 配置PHP_CodeSniffer自动检查代码

    通过composer 安装PHP_CodeSniffer : squizlabs/PHP_CodeSniffer gihub地址 composer global require "squiz ...

  5. Farm Irrigation ZOJ 2412(DFS连通图)

    Benny has a spacious farm land to irrigate. The farm land is a rectangle, and is divided into a lot ...

  6. OrderSys---Spring 计划(第一天)

    Sprint 计划会议: 目标: 1.了解需求分析书的内容 2.划分OrderSys的功能模块 3.开始制作原型 Sprint 3 Backlog细化: ID Name Est How to demo ...

  7. PSP Daily——团队项目Alpha发布

    视频展示:优酷视频链接.文案如下 PSP Daily软件NABCD分析: 1) N (Need 需求) PSP Daily 解决了用户(软件工程课上学生)记录例行报告.写每周PSP表格和统计的需求.潜 ...

  8. c# byte转docx

    问题情境: docx文件放进resource中,再用程序读出来的时候是二进制数组. 解决办法: public string ByteConvertWord(byte[] data, string fi ...

  9. OOP 1.2 const关键字

    1.2 const关键字 1.常量 指针常量 定义常量:const 类型 =值 定义指针常量:const *类型=值 常量指针不可通过常量指针修改其指向的内容 可直接修改其指向的内容 常量指针的指向可 ...

  10. 第二次c++作业(觉得渐渐入门系列)

    其实说实话,我还是不敢很确定地说面向对象和面向过程这两种语言,我确实能分得开,但是我觉得倒是比以前好很多了.//(大概是谈了对象,知道了什么是面向对象编程) 1.从个人角度来说, a:面向过程就是-- ...