CH5103 传纸条【线性dp】
5103 传纸条 0x50「动态规划」例题
描述
给定一个 N*M 的矩阵A,每个格子中有一个整数。现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走。路径经过的格子中的数会被取走。两条路径不能经过同一个格子。求取得的数之和最大是多少。N,M≤50。
输入格式
第一行有2个用空格隔开的整数n和m,表示有n行m列(1<=n,m<=50)。
接下来的n行是一个n*m的矩阵,每行的n个整数之间用空格隔开。
输出格式
一个整数,表示答案。
样例输入
3 3
0 3 9
2 8 5
5 7 0
样例输出
34
数据范围与约定
- 30%的数据满足:1<=m,n<=10
100%的数据满足:1<=m,n<=50
来源
CCF NOIP2008 T3
题意:n*m的格子里每个格子有一个权值,从(1,1)走到(n,m)两条路,(只能向下或者向右)求路径之和。走过的格子只算一次权值。
思路:
把“路径长度”即当前走过的步数作为DP的“阶段”。【因为只能向下或向右,走到(n,m)时的路径长度是n+m-2】
每一个阶段中,把两条路径同时扩展一步,路径长度增加1,从而转移到下一个阶段。
还需确定两条路径当前的末尾位置。并且 x1+y1 = x2 + y2 = i + 2
所以就可以用三维dp维护,每次有4种扩展方式。并且要考虑扩展后是否两个点坐标相同。
目标是dp[n+m-2][n][n]
#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n, m;
const int maxn = ;
int g[maxn][maxn];
int dp[maxn * ][maxn][maxn] = {}; int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
scanf("%d", &g[i][j]);
}
} dp[][][] = g[][];
for(int i = ; i <= n + m - ; i++){
for(int x1 = ; x1 <= min(n, i + ); x1++){
for(int x2 = ; x2 <= min(n, i + ); x2++){
int y1 = i + - x1, y2 = i + - x2;
if(x1 == x2 && y1 == y2){
dp[i + ][x1][x2] = max(dp[i + ][x1][x2], dp[i][x1][x2] + g[x1][y1 + ]);
dp[i + ][x1 + ][x2 + ] = max(dp[i + ][x1 + ][x2 + ], dp[i][x1][x2] + g[x1 + ][y1]);
}
else{
dp[i + ][x1][x2] = max(dp[i + ][x1][x2], dp[i][x1][x2] + g[x1][y1 + ] + g[x2][y2 + ]);
dp[i + ][x1 + ][x2 + ] = max(dp[i + ][x1 + ][x2 + ], dp[i][x1][x2] + g[x1 + ][y1] + g[x2 + ][y2]);
} if(x1 == x2 + && y1 + == y2){
dp[i + ][x1][x2 + ] = max(dp[i + ][x1][x2 + ], dp[i][x1][x2] + g[x1][y1 + ]);
}
else{
dp[i + ][x1][x2 + ] = max(dp[i + ][x1][x2 + ], dp[i][x1][x2] + g[x1][y1 + ] + g[x2 + ][y2]);
} if(x1 + == x2 && y1 == y2 + ){
dp[i + ][x1 + ][x2] = max(dp[i + ][x1 + ][x2], dp[i][x1][x2] + g[x1 + ][y1]);
}
else{
dp[i + ][x1 + ][x2] = max(dp[i + ][x1 + ][x2], dp[i][x1][x2] + g[x1 + ][y1] + g[x2][y2 + ]);
}
}
}
}
printf("%d\n", dp[n + m - ][n][n]);
return ;
}
CH5103 传纸条【线性dp】的更多相关文章
- CH5103 [NOIP2008]传纸条[线性DP]
给定一个 N*M 的矩阵A,每个格子中有一个整数.现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走.路径经过的格子中的数会被取走.两条路径不能经过同一 ...
- 传纸条---(dp)
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mmm行nnn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了. ...
- P1006 传纸条[棋盘DP]
题目来源:洛谷 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接 ...
- [Luogu P1006]传纸条 (网格DP)
题面 传送门:https://www.luogu.org/problemnew/show/P1006 Solution 挺显然但需要一定理解的网络(应该是那么叫吧)DP 首先有一个显然但重要的结论要发 ...
- NOIP2008 传纸条(DP及滚动数组优化)
传送门 这道题有好多好多种做法呀……先说一下最暴力的,O(n^4的做法) 我们相当于要找两条从左上到右下的路,使路上的数字和最大.所以其实路径从哪里开始走并不重要,我们就直接假设全部是从左上出发的好啦 ...
- 洛谷P1006 传纸条【dp】
题目:https://www.luogu.org/problemnew/show/P1006 题意: 给定一个m*n的矩阵,从(1,1)向下或向右走到(m,n)之后向上或向左走回(1,1),要求路径中 ...
- NOIP2008传纸条[DP]
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- TYVJ 1011 NOIP 2008&&NOIP 2000 传纸条&&方格取数 Label:多线程dp
做题记录:2016-08-15 15:47:07 背景 NOIP2008复赛提高组第三题 描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...
- 传纸条(一)(双线程dp)
传纸条(一) 时间限制:2000 ms | 内存限制:65535 KB 难度:5 描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...
随机推荐
- 安卓开发学习2-官方例子Accelerometer
1.使用WakeLock防止屏幕被锁住,如果用户自己锁住屏幕,下次再开的时候还会重置一下,防止被锁. 2.SimulationView接收传感器事件,并且绘制.它实现SensorEventListen ...
- 【Android】12.6 利用Intent实现记事本功能(NotePad)
分类:C#.Android.VS2015: 创建日期:2016-02-23 一.简介 这个例子演示如何实现一个简单的记事本功能. 该例子提前使用了后面章节将要介绍的SQLLite数据库. 二.示例-c ...
- Java常量池解析与字符串intern简介
在Java应用程序运行时,Java虚拟机会保存一份内部的运行时常量池,它区别于class文件的常量池,是class文件常量池映射到虚拟机中的数据结构. 关于class文件常量池的部分可以参考之前的博文 ...
- @XStreamAlias使用
@XStreamAlias使用 一. 特点: 简化的API; 无映射文件; 高性能,低内存占用; 整洁的XML; 不需要修改对象;支持内部私有字段,不需要setter/getter方法 提供序列化接口 ...
- swift 类型.
swift 类型 变量声明 用let来声明常量,用var来声明变量 可以在一行中声明多个常量或者多个变量,用逗号隔开 var x = 0.0, y = 0.0, z = 0.0 类型安全 Swift ...
- vue-router介绍
vue-router学习 转自:https://my.oschina.net/u/1416844/blog/849971 1. vue-router介绍 vue-router把react-router ...
- 新建一个用户,让他只能看到某一个视图(View),如何设置
新建一个用户,让他只能看到某一个视图(View),怎么设置? 新建一个用户,让他只能看到某一个视图(View),怎么设置? 如果做不到“只能看到指定视图”,最好能做到“对指定表或视图只有查询的权限”. ...
- poj3250单调栈
有n只羊,(姑且算是羊吧,也有可能是牛啊猫啊什么之类的),每只羊都有一个身高,前面的羊要看到后面的羊的条件是,后面的羊高度要小于前面的羊,就问各位羊加起来看到的牛多少只....... #include ...
- python学习笔记(4)--聊天记录处理
说明: 1.把冒号和前面的名字去掉 2.男的台词放一个txt文件,女的台词放一个txt文件 3.遇到======就重新生成一个文件 record.txt: 婷婷:迪迪早啊! 迪迪:早啊! 婷婷:111 ...
- man page用法
通过man man可查看man page的具体用法. 1 Executable programs or shell commands 2 System calls (functio ...