CH5103 传纸条【线性dp】
5103 传纸条 0x50「动态规划」例题
描述
给定一个 N*M 的矩阵A,每个格子中有一个整数。现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走。路径经过的格子中的数会被取走。两条路径不能经过同一个格子。求取得的数之和最大是多少。N,M≤50。
输入格式
第一行有2个用空格隔开的整数n和m,表示有n行m列(1<=n,m<=50)。
接下来的n行是一个n*m的矩阵,每行的n个整数之间用空格隔开。
输出格式
一个整数,表示答案。
样例输入
3 3
0 3 9
2 8 5
5 7 0
样例输出
34
数据范围与约定
- 30%的数据满足:1<=m,n<=10
100%的数据满足:1<=m,n<=50
来源
CCF NOIP2008 T3
题意:n*m的格子里每个格子有一个权值,从(1,1)走到(n,m)两条路,(只能向下或者向右)求路径之和。走过的格子只算一次权值。
思路:
把“路径长度”即当前走过的步数作为DP的“阶段”。【因为只能向下或向右,走到(n,m)时的路径长度是n+m-2】
每一个阶段中,把两条路径同时扩展一步,路径长度增加1,从而转移到下一个阶段。
还需确定两条路径当前的末尾位置。并且 x1+y1 = x2 + y2 = i + 2
所以就可以用三维dp维护,每次有4种扩展方式。并且要考虑扩展后是否两个点坐标相同。
目标是dp[n+m-2][n][n]
#include <bits/stdc++.h>
#include<iostream>
#include<cmath>
#include<algorithm>
#include<stdio.h>
#include<cstring>
#include<map> #define inf 0x3f3f3f3f
using namespace std;
typedef long long LL; int n, m;
const int maxn = ;
int g[maxn][maxn];
int dp[maxn * ][maxn][maxn] = {}; int main()
{
scanf("%d%d", &n, &m);
for(int i = ; i <= n; i++){
for(int j = ; j <= m; j++){
scanf("%d", &g[i][j]);
}
} dp[][][] = g[][];
for(int i = ; i <= n + m - ; i++){
for(int x1 = ; x1 <= min(n, i + ); x1++){
for(int x2 = ; x2 <= min(n, i + ); x2++){
int y1 = i + - x1, y2 = i + - x2;
if(x1 == x2 && y1 == y2){
dp[i + ][x1][x2] = max(dp[i + ][x1][x2], dp[i][x1][x2] + g[x1][y1 + ]);
dp[i + ][x1 + ][x2 + ] = max(dp[i + ][x1 + ][x2 + ], dp[i][x1][x2] + g[x1 + ][y1]);
}
else{
dp[i + ][x1][x2] = max(dp[i + ][x1][x2], dp[i][x1][x2] + g[x1][y1 + ] + g[x2][y2 + ]);
dp[i + ][x1 + ][x2 + ] = max(dp[i + ][x1 + ][x2 + ], dp[i][x1][x2] + g[x1 + ][y1] + g[x2 + ][y2]);
} if(x1 == x2 + && y1 + == y2){
dp[i + ][x1][x2 + ] = max(dp[i + ][x1][x2 + ], dp[i][x1][x2] + g[x1][y1 + ]);
}
else{
dp[i + ][x1][x2 + ] = max(dp[i + ][x1][x2 + ], dp[i][x1][x2] + g[x1][y1 + ] + g[x2 + ][y2]);
} if(x1 + == x2 && y1 == y2 + ){
dp[i + ][x1 + ][x2] = max(dp[i + ][x1 + ][x2], dp[i][x1][x2] + g[x1 + ][y1]);
}
else{
dp[i + ][x1 + ][x2] = max(dp[i + ][x1 + ][x2], dp[i][x1][x2] + g[x1 + ][y1] + g[x2][y2 + ]);
}
}
}
}
printf("%d\n", dp[n + m - ][n][n]);
return ;
}
CH5103 传纸条【线性dp】的更多相关文章
- CH5103 [NOIP2008]传纸条[线性DP]
给定一个 N*M 的矩阵A,每个格子中有一个整数.现在需要找到两条从左上角 (1,1) 到右下角 (N,M) 的路径,路径上的每一步只能向右或向下走.路径经过的格子中的数会被取走.两条路径不能经过同一 ...
- 传纸条---(dp)
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mmm行nnn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了. ...
- P1006 传纸条[棋盘DP]
题目来源:洛谷 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接 ...
- [Luogu P1006]传纸条 (网格DP)
题面 传送门:https://www.luogu.org/problemnew/show/P1006 Solution 挺显然但需要一定理解的网络(应该是那么叫吧)DP 首先有一个显然但重要的结论要发 ...
- NOIP2008 传纸条(DP及滚动数组优化)
传送门 这道题有好多好多种做法呀……先说一下最暴力的,O(n^4的做法) 我们相当于要找两条从左上到右下的路,使路上的数字和最大.所以其实路径从哪里开始走并不重要,我们就直接假设全部是从左上出发的好啦 ...
- 洛谷P1006 传纸条【dp】
题目:https://www.luogu.org/problemnew/show/P1006 题意: 给定一个m*n的矩阵,从(1,1)向下或向右走到(m,n)之后向上或向左走回(1,1),要求路径中 ...
- NOIP2008传纸条[DP]
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- TYVJ 1011 NOIP 2008&&NOIP 2000 传纸条&&方格取数 Label:多线程dp
做题记录:2016-08-15 15:47:07 背景 NOIP2008复赛提高组第三题 描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...
- 传纸条(一)(双线程dp)
传纸条(一) 时间限制:2000 ms | 内存限制:65535 KB 难度:5 描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行 ...
随机推荐
- form表单回车Enter不直接提交,类似tab切换
<input> 控件增加onkeypress事件 onkeypress="return handleEnter(this, event)" JS如下: var keyC ...
- 419. Roman to Integer【medium】
Given a roman numeral, convert it to an integer. The answer is guaranteed to be within the range fro ...
- nyoj983 首尾相连数组的最大子数组和
首尾相连数组的最大子数组和 时间限制:1000 ms | 内存限制:65535 KB 难度:4 描述 给定一个由N个整数元素组成的数组arr,数组中有正数也有负数,这个数组不是一般的数组,其首尾是 ...
- html-blogsdemo
博客标题小样,代码预览是有动态效果的,但在博客园发布就没动画了,知道的大神麻烦告知下,谢谢. code <!DOCTYPE html> <html lang="en&quo ...
- Angular+Electron+VSCode的桌面应用
Angular+Electron+VSCode的桌面应用 转自:http://blog.csdn.net/yr7942793/article/details/50986696 第一部分 Electro ...
- Javascript知识点:IIFE - 立即调用函数
Immediately-invoked Function Expression(IIFE,立即调用函数),简单的理解就是定义完成函数之后立即执行.因此有时候也会被称为“自执行的匿名函数”(self-e ...
- 个别图片IE中无法显示问题
今天有人保障,某些图片在IE下无法打开,但是其他浏览器均没有问题.以前还真没遇到过这类问题,从上至下查看了一遍,能排除的因素基本都排除了,还是不知道为什么不能显示,真是奇怪了.最后注意到无法显示的图片 ...
- ubuntu16.04 安装opencv3.2.0以及opencv_contrib-3.2.0
1.需要的包:sudo apt-get install build-essentialsudo apt-get install cmake git libgtk2.0-dev pkg-config l ...
- Win10下安装MySQL总卡在write configuration的解决办法
先说结论 删除 C:\ProgramData 下的MySQL文件夹!!! 折腾过程 反复安装卸载,安装版.绿色版,都不行,清理注册表,清理安装文件夹,还是不行!!! 最后找到并删除 C:\Prog ...
- php -- each()、list()
1.each的用法 先看API:array each ( array &$array ) api里是这么描述的:each — 返回数组中当前的键/值对并将数组指针向前移动一步 我们先来看看返回 ...