转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html

假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string。如aba,或者abba。本题是这种,给定输入一个字符串。要求输出一个子串,使得子串是最长的padromic string。

下边提供3种思路

1.两侧比较法

以abba这样一个字符串为例来看,abba中,一共同拥有偶数个字。第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位
以aba这样一个字符串为例来看,aba中。一共同拥有奇数个字符。排除掉正中间的那个字符后,第1位=倒数第1位......第N位=倒数第N位
所以,如果找到一个长度为len1的子串后,我们接下去測试它是否满足,第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位。也就是说,去測试从头尾到中点,字符是否逐一相应相等。

public class LongestPalindromicSubString1 {

	/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(longestPalindrome1("babcbabcbaccba"));
} public static String longestPalindrome1(String s) { int maxPalinLength = 0;
String longestPalindrome = null;
int length = s.length(); // check all possible sub strings
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int len = j - i;
String curr = s.substring(i, j + 1);
if (isPalindrome(curr)) {
if (len > maxPalinLength) {
longestPalindrome = curr;
maxPalinLength = len;
}
}
}
} return longestPalindrome;
} public static boolean isPalindrome(String s) { for (int i = 0; i < s.length() - 1; i++) {
if (s.charAt(i) != s.charAt(s.length() - 1 - i)) {
return false;
}
} return true;
}
}
</span>

2.动态规划法

如果dp[ i ][ j ]的值为true,表示字符串s中下标从 i 到 j 的字符组成的子串是回文串。那么能够推出:
    dp[ i ][ j ] = dp[ i + 1][ j - 1] && s[ i ] == s[ j ]。
    这是一般的情况,因为须要依靠i+1, j -1,所以有可能 i + 1 = j -1, i +1 = (j - 1) -1,因此须要求出基准情况才干套用以上的公式:
    a. i + 1 = j -1,即回文长度为1时,dp[ i ][ i ] = true;
    b. i +1 = (j - 1) -1,即回文长度为2时,dp[ i ][ i + 1] = (s[ i ] == s[ i + 1])。
    有了以上分析就能够写出代码了。

须要注意的是动态规划须要额外的O(n2)的空间。

public class LongestPalindromicSubString2 {

	public static String longestPalindrome2(String s) {
if (s == null)
return null; if(s.length() <=1)
return s; int maxLen = 0;
String longestStr = null; int length = s.length(); int[][] table = new int[length][length]; //every single letter is palindrome
for (int i = 0; i < length; i++) {
table[i][i] = 1;
}
printTable(table); //e.g. bcba
//two consecutive same letters are palindrome
for (int i = 0; i <= length - 2; i++) {
//System.out.println("i="+i+" "+s.charAt(i));
//System.out.println("i="+i+" "+s.charAt(i+1));
if (s.charAt(i) == s.charAt(i + 1)){
table[i][i + 1] = 1;
longestStr = s.substring(i, i + 2);
}
}
System.out.println(longestStr);
printTable(table);
//condition for calculate whole table
for (int l = 3; l <= length; l++) {
for (int i = 0; i <= length-l; i++) {
int j = i + l - 1;
if (s.charAt(i) == s.charAt(j)) {
table[i][j] = table[i + 1][j - 1];
if (table[i][j] == 1 && l > maxLen)
longestStr = s.substring(i, j + 1); } else {
table[i][j] = 0;
}
printTable(table);
}
} return longestStr;
}
public static void printTable(int[][] x){
for(int [] y : x){
for(int z: y){
//System.out.print(z + " ");
}
//System.out.println();
}
//System.out.println("------");
}
public static void main(String[] args) {
System.out.println(longestPalindrome2("1263625"));//babcbabcbaccba
}
}</span>

3.中心扩展法

由于回文字符串是以中心轴对称的,所以假设我们从下标 i 出发。用2个指针向 i 的两边扩展推断是否相等,那么仅仅须要对0到
n-1的下标都做此操作,就能够求出最长的回文子串。但须要注意的是,回文字符串有奇偶对称之分,即"abcba"与"abba"2种类型。
因此须要在代码编写时都做推断。
     设函数int Palindromic ( string &s, int i ,int j) 是求由下标 i 和 j 向两边扩展的回文串的长度,那么对0至n-1的下标。调用2次此函数:
     int lenOdd =  Palindromic( str, i, i ) 和 int lenEven = Palindromic (str , i , j ),就可以求得以i 下标为奇回文和偶回文的子串长度。

接下来以lenOdd和lenEven中的最大值与当前最大值max比較就可以。
     这种方法有一个优点是时间复杂度为O(n2),且不须要使用额外的空间。

public class LongestPalindromicSubString3 {
public static String longestPalindrome(String s) {
if (s.isEmpty()) {
return null;
}
if (s.length() == 1) {
return s;
}
String longest = s.substring(0, 1);
for (int i = 0; i < s.length(); i++) {
// get longest palindrome with center of i
String tmp = helper(s, i, i);
if (tmp.length() > longest.length()) {
longest = tmp;
} // get longest palindrome with center of i, i+1
tmp = helper(s, i, i + 1);
if (tmp.length() > longest.length()) {
longest = tmp;
}
}
return longest;
} // Given a center, either one letter or two letter,
// Find longest palindrome
public static String helper(String s, int begin, int end) {
while (begin >= 0 && end <= s.length() - 1
&& s.charAt(begin) == s.charAt(end)) {
begin--;
end++;
}
String subS = s.substring(begin + 1, end);
return subS;
} public static void main(String[] args) {
System.out.println(longestPalindrome("ABCCBA"));//babcbabcbaccba
}
}</span>

转载-----Java Longest Palindromic Substring(最长回文字符串)的更多相关文章

  1. Java Longest Palindromic Substring(最长回文字符串)

    假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...

  2. Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  3. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  4. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  5. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  6. lintcode :Longest Palindromic Substring 最长回文子串

    题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...

  7. 【翻译】Longest Palindromic Substring 最长回文子串

    原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...

  8. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

  9. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

随机推荐

  1. Unsupported compiler 'com.apple.compilers.llvmgcc42' selected for architecture 'armv7' Xcode5

    刚刚将Xcode更新到Xcode5,一运行报如下错误: Unsupported compiler 'com.apple.compilers.llvmgcc42' selected for archit ...

  2. 封装baseservice

    package com.huawei.base; import java.io.Serializable;import java.util.List; public abstract class Ba ...

  3. 利用UUID 随机生成8位短号

    //获得8位短号 public static String[] chars = new String[] { "a", "b", "c", ...

  4. Standard shader 和 Standard (Specular setup) Shader

    http://blog.csdn.net/jk823394954/article/details/48594341

  5. Python入门之 字符串操作,占位符,比较大小 等

    Python  字符串 常用的操作 切片 左包括右不包括的原则 ________________ 比较字符串大小 eg: cmp("a",'b')   -1第一个比第二个小  0 ...

  6. OC中数组排序总结

    过完节回来,感觉很多东西都生疏了.总结一下数组的排序.应该不会太完美,后续添加补充. OC中的数组排序方法其实不太多,要根据不同的使用场景来使用不同的方法.Foundation框架中一般用到一下几个方 ...

  7. GitHub 上的十一款热门开源安全工具

    作为开源开发领域的基石,“所有漏洞皆属浅表”已经成为一条著名的原则甚至是信条.作为广为人知的Linus定律,当讨论开源模式在安全方面的优势时,开放代码能够提高项目漏洞检测效率的理论也被IT专业人士们所 ...

  8. 对max_allowed_packet这个参数的误解

    之前一篇文章知识对,这个参数一个泛泛的概念,但是并没有理解这个参数的真正意义,现在差不多有那么点儿感觉了,主要的意思是每一条记录是一个包,不可拆分,而且包括blob,text等大字段.

  9. C语言cJSON库的使用,解析json数据格式

    C语言cJSON库的使用,解析json数据格式 摘自:https://www.cnblogs.com/piaoyang/p/9274925.html 对于c语言来说是没有字典这样的结构的,所以对于解析 ...

  10. 迁移ORACLE数据库文件到ASM

    迁移数据文件到ASM 数据库一致性情况下迁移:将数据库启动到mount状态,生成rman copy 语句,然后在rman中执行: SQL> startup mount SQL> selec ...