转载地址:https://www.cnblogs.com/clnchanpin/p/6880322.html

假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string。如aba,或者abba。本题是这种,给定输入一个字符串。要求输出一个子串,使得子串是最长的padromic string。

下边提供3种思路

1.两侧比较法

以abba这样一个字符串为例来看,abba中,一共同拥有偶数个字。第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位
以aba这样一个字符串为例来看,aba中。一共同拥有奇数个字符。排除掉正中间的那个字符后,第1位=倒数第1位......第N位=倒数第N位
所以,如果找到一个长度为len1的子串后,我们接下去測试它是否满足,第1位=倒数第1位。第2位=倒数第2位......第N位=倒数第N位。也就是说,去測试从头尾到中点,字符是否逐一相应相等。

public class LongestPalindromicSubString1 {

	/**
* @param args
*/
public static void main(String[] args) {
// TODO Auto-generated method stub
System.out.println(longestPalindrome1("babcbabcbaccba"));
} public static String longestPalindrome1(String s) { int maxPalinLength = 0;
String longestPalindrome = null;
int length = s.length(); // check all possible sub strings
for (int i = 0; i < length; i++) {
for (int j = i + 1; j < length; j++) {
int len = j - i;
String curr = s.substring(i, j + 1);
if (isPalindrome(curr)) {
if (len > maxPalinLength) {
longestPalindrome = curr;
maxPalinLength = len;
}
}
}
} return longestPalindrome;
} public static boolean isPalindrome(String s) { for (int i = 0; i < s.length() - 1; i++) {
if (s.charAt(i) != s.charAt(s.length() - 1 - i)) {
return false;
}
} return true;
}
}
</span>

2.动态规划法

如果dp[ i ][ j ]的值为true,表示字符串s中下标从 i 到 j 的字符组成的子串是回文串。那么能够推出:
    dp[ i ][ j ] = dp[ i + 1][ j - 1] && s[ i ] == s[ j ]。
    这是一般的情况,因为须要依靠i+1, j -1,所以有可能 i + 1 = j -1, i +1 = (j - 1) -1,因此须要求出基准情况才干套用以上的公式:
    a. i + 1 = j -1,即回文长度为1时,dp[ i ][ i ] = true;
    b. i +1 = (j - 1) -1,即回文长度为2时,dp[ i ][ i + 1] = (s[ i ] == s[ i + 1])。
    有了以上分析就能够写出代码了。

须要注意的是动态规划须要额外的O(n2)的空间。

public class LongestPalindromicSubString2 {

	public static String longestPalindrome2(String s) {
if (s == null)
return null; if(s.length() <=1)
return s; int maxLen = 0;
String longestStr = null; int length = s.length(); int[][] table = new int[length][length]; //every single letter is palindrome
for (int i = 0; i < length; i++) {
table[i][i] = 1;
}
printTable(table); //e.g. bcba
//two consecutive same letters are palindrome
for (int i = 0; i <= length - 2; i++) {
//System.out.println("i="+i+" "+s.charAt(i));
//System.out.println("i="+i+" "+s.charAt(i+1));
if (s.charAt(i) == s.charAt(i + 1)){
table[i][i + 1] = 1;
longestStr = s.substring(i, i + 2);
}
}
System.out.println(longestStr);
printTable(table);
//condition for calculate whole table
for (int l = 3; l <= length; l++) {
for (int i = 0; i <= length-l; i++) {
int j = i + l - 1;
if (s.charAt(i) == s.charAt(j)) {
table[i][j] = table[i + 1][j - 1];
if (table[i][j] == 1 && l > maxLen)
longestStr = s.substring(i, j + 1); } else {
table[i][j] = 0;
}
printTable(table);
}
} return longestStr;
}
public static void printTable(int[][] x){
for(int [] y : x){
for(int z: y){
//System.out.print(z + " ");
}
//System.out.println();
}
//System.out.println("------");
}
public static void main(String[] args) {
System.out.println(longestPalindrome2("1263625"));//babcbabcbaccba
}
}</span>

3.中心扩展法

由于回文字符串是以中心轴对称的,所以假设我们从下标 i 出发。用2个指针向 i 的两边扩展推断是否相等,那么仅仅须要对0到
n-1的下标都做此操作,就能够求出最长的回文子串。但须要注意的是,回文字符串有奇偶对称之分,即"abcba"与"abba"2种类型。
因此须要在代码编写时都做推断。
     设函数int Palindromic ( string &s, int i ,int j) 是求由下标 i 和 j 向两边扩展的回文串的长度,那么对0至n-1的下标。调用2次此函数:
     int lenOdd =  Palindromic( str, i, i ) 和 int lenEven = Palindromic (str , i , j ),就可以求得以i 下标为奇回文和偶回文的子串长度。

接下来以lenOdd和lenEven中的最大值与当前最大值max比較就可以。
     这种方法有一个优点是时间复杂度为O(n2),且不须要使用额外的空间。

public class LongestPalindromicSubString3 {
public static String longestPalindrome(String s) {
if (s.isEmpty()) {
return null;
}
if (s.length() == 1) {
return s;
}
String longest = s.substring(0, 1);
for (int i = 0; i < s.length(); i++) {
// get longest palindrome with center of i
String tmp = helper(s, i, i);
if (tmp.length() > longest.length()) {
longest = tmp;
} // get longest palindrome with center of i, i+1
tmp = helper(s, i, i + 1);
if (tmp.length() > longest.length()) {
longest = tmp;
}
}
return longest;
} // Given a center, either one letter or two letter,
// Find longest palindrome
public static String helper(String s, int begin, int end) {
while (begin >= 0 && end <= s.length() - 1
&& s.charAt(begin) == s.charAt(end)) {
begin--;
end++;
}
String subS = s.substring(begin + 1, end);
return subS;
} public static void main(String[] args) {
System.out.println(longestPalindrome("ABCCBA"));//babcbabcbaccba
}
}</span>

转载-----Java Longest Palindromic Substring(最长回文字符串)的更多相关文章

  1. Java Longest Palindromic Substring(最长回文字符串)

    假设一个字符串从左向右写和从右向左写是一样的,这种字符串就叫做palindromic string.如aba,或者abba.本题是这种,给定输入一个字符串.要求输出一个子串,使得子串是最长的padro ...

  2. Longest Palindromic Substring (最长回文字符串)——两种方法还没看,仍需认真看看

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

  3. Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法)

    Leetcode 5. Longest Palindromic Substring(最长回文子串, Manacher算法) Given a string s, find the longest pal ...

  4. 1. Longest Palindromic Substring ( 最长回文子串 )

    要求: Given a string S, find the longest palindromic substring in S. (从字符串 S 中最长回文子字符串.) 何为回文字符串? A pa ...

  5. LeetCode:Longest Palindromic Substring 最长回文子串

    题目链接 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  6. lintcode :Longest Palindromic Substring 最长回文子串

    题目 最长回文子串 给出一个字符串(假设长度最长为1000),求出它的最长回文子串,你可以假定只有一个满足条件的最长回文串. 样例 给出字符串 "abcdzdcab",它的最长回文 ...

  7. 【翻译】Longest Palindromic Substring 最长回文子串

    原文地址: http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-i.html 转载请注明出处:http:// ...

  8. 【LeetCode】5. Longest Palindromic Substring 最长回文子串

    作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 公众号:负雪明烛 本文关键词:最长回文子串,题解,leetcode, 力扣,python ...

  9. [LeetCode] Longest Palindromic Substring 最长回文串

    Given a string S, find the longest palindromic substring in S. You may assume that the maximum lengt ...

随机推荐

  1. ubuntu16.04挂载windows NTFS磁盘方法

    sudo fdisk -l 查看所有磁盘分区 mount命令 mount -t ntfs /dev/sdb3 /mnt/share -o iocharset=utf8,umask= 修改/etc/fs ...

  2. mySQL中插入多条记录

    用一条INSERT向SQL中插入多条记录 2008-12-22 10:07:01|  分类: 记事本_编程技术|举报|字号 订阅     Sql 语法: 插入多行记录 Insert Into Tabl ...

  3. Scala基础:闭包、柯里化、隐式转换和隐式参数

    闭包,和js中的闭包一样,返回值依赖于声明在函数外部的一个或多个变量,那么这个函数就是闭包函数. val i: Int = 20 //函数func的方法体中使用了在func外部定义的变量 那func就 ...

  4. ORM思想

    -------------------siwuxie095 什么是 ORM 思想 1.Hibernate 使用 ORM 思想对数据库进行 CRUD 操作 2.ORM:Object Relational ...

  5. Javascript 浅拷贝与深拷贝

    在了解JS的浅拷贝与深拷贝之前,我们需要先知道什么是值传递与引用传递. 在JS中,基本类型值的拷贝是按值传递的,而引用类型值的拷贝则是按引用传递的.通过值传递的变量间不会有任何牵连,互相独立:但是引用 ...

  6. [C++] inline function

    trap #define GET3(N)  N*N*N GET3(1+2) :  1+2*1+2*1+2 = 7

  7. ubuntu安装meshlab

    ubuntu安装meshlab https://github.com/nine7nine/meshlab.git

  8. servletConfig的应用

    在Servlet的配置文件中,可以使用一个或多个<init-param>标签为servlet配置一些初始化参数. 当servlet配置了初始化参数后,web容器在创建servlet实例对象 ...

  9. Spring框架总结(三)

    SpringIOC容器 一.创建对象 SpringIOC容器,是spring核心内容. 作用: 创建对象 & 处理对象的依赖关系 IOC容器创建对象: 创建对象, 有几种方式: 1) 调用无参 ...

  10. kcp源码segment头文件各字段含义

    conv conv为一个表示会话编号的整数,和tcp的 conv一样,通信双// 方需保证 conv相同,相互的数据包才能够被认可 cmd             cmd用来区分分片的作用.IKCP_ ...