题目大意:
  给你一棵带边权的树,每个结点可能是红色或者黑色,你可以交换若干个点对使得任意一个红点到达与其最近的黑点的距离小于等于m。

思路:
  动态规划。
  f[i][j][k]表示以i为根的子树中,连向结点j,子树中已经确定有k个是黑点所需要的最小交换次数。
  best[i][k]表示以i为根的子树,已经确定有k个是黑点所需要的最小交换次数。
  设当前根为x,子结点为y,连向结点i,总共确定了k个黑点,新确定了l个黑点,转移方程为:
  f[x][i][k]=min(min{f[x][i][k-l]+best[y][l]},min{f[x][i][k-l+1]+f[y][i][l]-!col[i]});
  当然要判断新连向的点与当前根的距离,这可以事先跑一遍O(n^3)的Floyd。
  最后会被卡内存,据lyx介绍,由于n<=500,可以用uint16卡过去。

 #include<cstdio>
#include<vector>
typedef unsigned short uint16;
inline int getint() {
register char ch;
while(!__builtin_isdigit(ch=getchar()));
register int x=ch^'';
while(__builtin_isdigit(ch=getchar())) x=(((x<<)+x)<<)+(ch^'');
return x;
}
template<typename _T1,typename _T2>
inline _T1 min(const _T1 &a,const _T2 &b) {
return a<b?a:b;
}
template<typename _T1,typename _T2>
inline _T1 max(const _T1 &a,const _T2 &b) {
return a>b?a:b;
}
const uint16 inf=~;
const uint16 N=;
bool col[N];
uint16 n,s;
int m;
int dis[N][N];
std::vector<uint16> e[N];
inline void add_edge(const uint16 &u,const uint16 &v,const int &w) {
e[u].push_back(v);
e[v].push_back(u);
dis[u][v]=dis[v][u]=w;
}
uint16 f[N][N][N],best[N][N],size[N];
void dfs(const uint16 &x,const uint16 &par) {
for(uint16 i=;i<e[x].size();i++) {
const uint16 &y=e[x][i];
if(y==par) continue;
dfs(y,x);
}
for(register uint16 i=;i<=n;i++) {
if(dis[x][i]>m) continue;
size[x]=;
f[x][i][]=!col[i];
for(register uint16 j=;j<e[x].size();j++) {
const uint16 &y=e[x][j];
if(y==par) continue;
for(register uint16 k=min(s,size[x]+size[y]);;k--) {
uint16 tmp=inf;
for(register uint16 j=max(k-size[x],);j<=min(k,size[y]);j++) {
tmp=min(tmp,f[x][i][k-j]+best[y][j]);
}
for(register uint16 j=max(k-size[x],)+;j<=min(k,size[y]);j++) {
tmp=min(tmp,f[x][i][k-j+]+f[y][i][j]-!col[i]);
}
f[x][i][k]=tmp;
if(!k) break;
}
size[x]+=size[y];
}
}
for(register uint16 i=;i<=s;i++) {
best[x][i]=inf;
for(register uint16 j=;j<=n;j++) {
best[x][i]=min(best[x][i],f[x][j][i]);
}
}
}
int main() {
n=getint(),m=getint();
for(register uint16 i=;i<=n;i++) {
s+=(col[i]=getint());
}
__builtin_memset(dis,0x3f,sizeof dis);
for(register uint16 i=;i<n;i++) {
const uint16 u=getint(),v=getint();
const int w=getint();
add_edge(u,v,w);
}
for(register uint16 k=;k<=n;k++) {
for(register uint16 i=;i<=n;i++) {
for(register uint16 j=;j<=n;j++) {
dis[i][j]=i==j?:min(dis[i][j],dis[i][k]+dis[k][j]);
}
}
}
__builtin_memset(f,0xff,sizeof f);
__builtin_memset(best,0xff,sizeof best);
dfs(,);
__builtin_printf("%d\n",best[][s]==inf?-:best[][s]);
return ;
}

[CodeForces-375E]Red and Black Tree的更多相关文章

  1. [CC-BLREDSET]Black and Red vertices of Tree

    [CC-BLREDSET]Black and Red vertices of Tree 题目大意: 有一棵\(n(\sum n\le10^6)\)个结点的树,每个结点有一种颜色(红色.黑色.白色).删 ...

  2. codeforces 741D Arpa’s letter-marked tree and Mehrdad’s Dokhtar-kosh paths(启发式合并)

    codeforces 741D Arpa's letter-marked tree and Mehrdad's Dokhtar-kosh paths 题意 给出一棵树,每条边上有一个字符,字符集大小只 ...

  3. codeforces 812E Sagheer and Apple Tree(思维、nim博弈)

    codeforces 812E Sagheer and Apple Tree 题意 一棵带点权有根树,保证所有叶子节点到根的距离同奇偶. 每次可以选择一个点,把它的点权删除x,它的某个儿子的点权增加x ...

  4. codeforces 220 C. Game on Tree

    题目链接 codeforces 220 C. Game on Tree 题解 对于 1节点一定要选的 发现对于每个节点,被覆盖切选中其节点的概率为祖先个数分之一,也就是深度分之一 代码 #includ ...

  5. BNUOJ 26229 Red/Blue Spanning Tree

    Red/Blue Spanning Tree Time Limit: 2000ms Memory Limit: 131072KB This problem will be judged on HDU. ...

  6. Codeforces E. Alyona and a tree(二分树上差分)

    题目描述: Alyona and a tree time limit per test 2 seconds memory limit per test 256 megabytes input stan ...

  7. CF375E Red and Black Tree(线性规划)

    CF375E Red and Black Tree(线性规划) Luogu 题解时间 很明显有一个略显复杂的 $ n^3 $ dp,但不在今天讨论范围内. 考虑一些更简单的方法. 设有 $ m $ 个 ...

  8. codeforces 342E :Xenia and Tree

    Description Xenia the programmer has a tree consisting of n nodes. We will consider the tree nodes i ...

  9. Codeforces 379 F. New Year Tree

    \(>Codeforces \space 379 F. New Year Tree<\) 题目大意 : 有一棵有 \(4\) 个节点个树,有连边 \((1,2) (1,3) (1,4)\) ...

  10. codeforces 399B. Red and Blue Balls 解题报告

    题目链接:http://codeforces.com/problemset/problem/399/B 题目意思:给出 n 个只由 R 和 B 组成的字符串(由上到下排列,相当于栈),问最多可以操作多 ...

随机推荐

  1. 2017 ACM暑期多校联合训练 - Team 4 1007 HDU 6073 Matching In Multiplication (模拟)

    题目链接 Problem Description In the mathematical discipline of graph theory, a bipartite graph is a grap ...

  2. python基础===用9种方式生成新的对象

    class Point: def __init__(self, x, y): self.x = x self.y = y point1 = Point(1, 2) point2 = eval(&quo ...

  3. ubuntu的su初始密码设置

    Ubuntu刚安装后,不能在terminal中运行su命令,因为root没有默认密码,需要手动设定. 以安装ubuntu时输入的用户名登陆,该用户在admin组中,有权限给root设定密码. 给roo ...

  4. 010 JVM类加载

    转自http://www.importnew.com/23742.html 前言 我们知道我们写的程序经过编译后成为了.class文件,.class文件中描述了类的各种信息,最终都需要加载到虚拟机之后 ...

  5. Linux 基础目录和命令

    Linux 标准目录结构   初学Linux,首先需要弄清Linux 标准目录结构 / root --- 启动Linux时使用的一些核心文件.如操作系统内核.引导程序Grub等. home --- 存 ...

  6. HDU 2859 Phalanx(二维DP)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2859 题目大意:对称矩阵是这样的矩阵,它由“左下到右”线对称. 相应位置的元素应该相同. 例如,这里是 ...

  7. [前端随笔][css] 弹性布局

    说在前面 弹性布局,顾名思义就是有弹性,能够根据屏幕/当前空间大小自由伸缩的.使用弹性布局可以很好的适应各种尺寸的客户端. 关键代码 display:flex; 设定元素为弹性布局 <文档传送门 ...

  8. python调用api方式

    1.shell版本 #!/bin/bash #根据api提供商,获取指定时间格式 datestr=`xxx` #根据api提供商,获取指定加盐密码格式 pwdstr=`xxx` curl -s -X ...

  9. WordPress用户角色与用户能力/权限

    WordPress用户角色(user roles)是WP或者其它插件增加的,可以让网站管理员(网站管理员也是一种角色)来方便的管理用户的权限/能力(Capabilities,一般情况下,一种角色不止有 ...

  10. jquery的一个模板引擎-zt

    jQuery-jTemplate.js下载:http://jtemplates.tpython.com/ 一 , 简单介绍 它是一个基于jQuery开发的javascript模板引擎.它主要的作用如下 ...