3514: Codechef MARCH14 GERALD07加强版

Time Limit: 60 Sec  Memory Limit: 256 MB
Submit: 2177  Solved: 834
[Submit][Status][Discuss]

Description

N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数。

Input

第一行四个整数N、M、K、type,代表点数、边数、询问数以及询问是否加密。
接下来M行,代表图中的每条边。
接下来K行,每行两个整数L、R代表一组询问。对于type=0的测试点,读入的L和R即为询问的L、R;对于type=1的测试点,每组询问的L、R应为L xor lastans和R xor lastans。

Output

K行每行一个整数代表该组询问的联通块个数。

Sample Input

3 5 4 0
1 3
1 2
2 1
3 2
2 2
2 3
1 5
5 5
1 2

Sample Output

2
1
3
1

HINT

对于100%的数据,1≤N、M、K≤200,000。

2016.2.26提高时限至60s

Source

用LCT求出NTR数组,然后主席树在线查询即可,比较简洁巧妙。

http://hzwer.com/4358.html

不过是两个高级数据结构合在一起,而且不是嵌套,理论上很好写。

实际上犯了很多低级错误,而且非常难调,以后一定要慢点写代码。

 #include<cstdio>
#include<algorithm>
#define lc ch[x][0]
#define rc ch[x][1]
#define rep(i,l,r) for (int i=l; i<=r; i++)
using namespace std; const int N=,K=,M=,inf=;
int n,m,Q,op,l,r,x,u,v,nd,ans,fa[N],ntr[K],root[K];
struct E{ int u,v; }e[K];
int find(int x){ return (fa[x]==x) ? x : fa[x]=find(fa[x]); } struct LCT{
int v[N],mn[N],s[N],ch[N][],f[N],tag[N];
bool isroot(int x){ return (!f[x]) || ((ch[f[x]][]!=x) && (ch[f[x]][]!=x)); }
void rev(int x){ swap(ch[x][],ch[x][]); tag[x]^=; }
void push(int x){ if (tag[x]) rev(lc),rev(rc),tag[x]=; }
void pd(int x){ if (!isroot(x)) pd(f[x]); push(x); } void upd(int x){
mn[x]=x;
if (v[mn[lc]]<v[mn[x]]) mn[x]=mn[lc];
if (v[mn[rc]]<v[mn[x]]) mn[x]=mn[rc];
} void rot(int x){
int y=f[x],z=f[y],w=ch[y][]==x;
if (!isroot(y)) ch[z][ch[z][]==y]=x;
f[x]=z; f[y]=x; f[ch[x][w^]]=y;
ch[y][w]=ch[x][w^]; ch[x][w^]=y; upd(y);
} void splay(int x){
pd(x);
while (!isroot(x)){
int y=f[x],z=f[y];
if (!isroot(y)){ if ((ch[z][]==y)^(ch[y][]==x)) rot(x); else rot(y); }
rot(x);
}
upd(x);
} void access(int x){ for (int y=; x; y=x,x=f[x]) splay(x),ch[x][]=y,upd(x); }
void mkroot(int x){ access(x); splay(x); rev(x);}
void link(int x,int y){ mkroot(x); f[x]=y; }
void cut(int x,int y){ mkroot(x); access(y); splay(y); ch[y][]=f[x]=; upd(y); }
int que(int x,int y){ mkroot(x); access(y); splay(y); return mn[y]; }
}T; struct S{
int ls[M],rs[M],sm[M]; void ins(int y,int &x,int L,int R,int pos){
x=++nd; ls[x]=ls[y]; rs[x]=rs[y]; sm[x]=sm[y]+;
if (L==R) return; int mid=(L+R)>>;
if (pos<=mid) ins(ls[y],ls[x],L,mid,pos); else ins(rs[y],rs[x],mid+,R,pos);
} int que(int x,int y,int L,int R,int k){
if (R==k){ return sm[y]-sm[x]; }
int mid=(L+R)>>;
if (k<=mid) return que(ls[x],ls[y],L,mid,k);
else return sm[ls[y]]-sm[ls[x]]+que(rs[x],rs[y],mid+,R,k);
}
}S; void Kruskal(){
int tot=n;
rep(i,,n) fa[i]=i;
rep(i,,m){
int u=e[i].u,v=e[i].v,x=find(u),y=find(v);
if (u==v) { ntr[i]=i; continue; }
if (x==y){
int t=T.que(u,v),k=T.v[t];
ntr[i]=k; T.cut(e[k].u,t); T.cut(e[k].v,t);
}else fa[x]=y;
tot++; T.mn[tot]=tot; T.v[tot]=i;
T.link(u,tot); T.link(v,tot);
}
rep(i,,m) S.ins(root[i-],root[i],,m,ntr[i]);
} void solve(){
rep(i,,Q){
scanf("%d%d",&l,&r);
if (op) l^=ans,r^=ans;
printf("%d\n",ans=n-S.que(root[l-],root[r],,m,l-));
}
} int main(){
freopen("bzoj3514.in","r",stdin);
freopen("bzoj3514.out","w",stdout);
scanf("%d%d%d%d",&n,&m,&Q,&op);
T.v[]=inf; rep(i,,n) T.mn[i]=i,T.v[i]=inf;
rep(i,,m) scanf("%d%d",&e[i].u,&e[i].v);
Kruskal(); solve();
return ;
}

[BZOJ3514]CodeChef MARCH14 GERALD07加强版(LCT+主席树)的更多相关文章

  1. BZOJ 3514: Codechef MARCH14 GERALD07加强版 [LCT 主席树 kruskal]

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1312  Solved: 501 ...

  2. BZOJ 3514: Codechef MARCH14 GERALD07加强版( LCT + 主席树 )

    从左到右加边, 假如+的边e形成环, 那么记下这个环上最早加入的边_e, 当且仅当询问区间的左端点> _e加入的时间, e对答案有贡献(脑补一下). 然后一开始是N个连通块, 假如有x条边有贡献 ...

  3. 【BZOJ3514】Codechef MARCH14 GERALD07加强版 LCT+主席树

    题解: 还是比较简单的 首先我们的思路是 确定起点 然后之后贪心的选择边(也就是越靠前越希望选) 我们发现我们只需要将起点从后向前枚举 然后用lct维护连通性 因为强制在线,所以用主席树记录状态就可以 ...

  4. bzoj3514 Codechef MARCH14 GERALD07加强版 lct预处理+主席树

    Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1951  Solved: 746[Submi ...

  5. 【BZOJ-3514】Codechef MARCH14 GERALD07加强版 LinkCutTree + 主席树

    3514: Codechef MARCH14 GERALD07加强版 Time Limit: 60 Sec  Memory Limit: 256 MBSubmit: 1288  Solved: 490 ...

  6. BZOJ3514: Codechef MARCH14 GERALD07加强版(LCT,主席树)

    Description N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. Input 第一行四个整数N.M.K.type,代表点数.边数.询问数以及询问是否加密.接下来M ...

  7. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT维护最大生成树 主席树

    题面 考虑没有询问,直接给你一个图问联通块怎么做. 并查集是吧. 现在想要动态地做,那么应该要用LCT. 考虑新加进来一条边,想要让它能够减少一个联通块的条件就是现在边的两个端点还没有联通. 如果联通 ...

  8. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT+可持久化线段树

    自己独自想出来并切掉还是很开心的~ Code: #include <bits/stdc++.h> #define N 400005 #define inf 1000000000 #defi ...

  9. BZOJ3514 Codechef MARCH14 GERALD07加强版 LCT

    欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ3514 题意概括 N个点M条边的无向图,询问保留图中编号在[l,r]的边的时候图中的联通块个数. N ...

随机推荐

  1. phpcms直接取子栏目的内容、调用点击量的方法

    子栏目里面的内容可以直接取,而不需要通过循环. {$CATEGORYS[$catid][catname]}//取子栏目的栏目名称 {$CATEGORYS[$catid][image]}//取子栏目的栏 ...

  2. lintcode 66.67.68 二叉树遍历(前序、中序、后序)

    AC代码: /** * Definition of TreeNode: * public class TreeNode { * public int val; * public TreeNode le ...

  3. OTA之流式更新及shell实现

    在OTA升级时,需要从网络下载OTA包,并写到flash上的对应分区中. 最简单的方式是将下载与更新分离,先将完整的数据包下载到本地,再将本地的OTA包更新到flash上.方便可靠. 但这种方式的问题 ...

  4. glom模块的使用(二)

    上次我们说到golm的简单应用这次我们继续带结构化数据的其他操作进行学习. Literal 用法:class glom.Literal(value) 这个方法的功能主要是添加自定义的键值. 例如: f ...

  5. 2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage

    2017-2018 ACM-ICPC, NEERC, Southern Subregional Contest, qualification stage A. Union of Doubly Link ...

  6. Java的Timer定时器

    Timer主要用于Java线程里指定时间或周期运行任务,它是线程安全的,但不提供实时性(real-time)保证. 上面提到了守护线程的概念. Java分为两种线程:用户线程和守护线程. 所谓守护线程 ...

  7. Maven核心概念

    一.坐标 在平面几何中,坐标(x,y)可以标识平面中唯一的一个点.在maven中,坐标是为了定位一个唯一确定的jar包.Maven世界拥有大量构建,我们需要找一个用来唯一标识一个构建的统一规范:拥有了 ...

  8. 学习笔记(二) 瓜娃(guava)的API快速熟悉使用

    1,大纲 让我们来熟悉瓜娃,并体验下它的一些API,分成如下几个部分: Introduction Guava Collection API Guava Basic Utilities IO API C ...

  9. Codeforces 813B The Golden Age(数学+枚举)

    题目大意:如果一个数t=x^a+y^b(a,b都是大于等于0的整数)那就是一个unlucky数字.给你x,y,l,r(2 ≤ x, y ≤ 10^18, 1 ≤ l ≤ r ≤ 10^18),求出l到 ...

  10. plsPlugin

    init: 监控目录变化(增删) 监控jar变化,load