【BZOJ】1053: [HAOI2007]反素数ant(贪心+dfs)
http://www.lydsy.com/JudgeOnline/problem.php?id=1053
约数个数等于分解出的质因数的(指数+1)的乘积这个就不用说了吧。。。
然后好神的题在于贪心。。。orz
首先分解质因子后,较小的数的指数一定大于等于较大的数的指数。(否则可以将较大的数多出来的质数填到小的数那里也符合条件)
然后对于约数个数相同的数,那么选最小的数(显然的吧)
所以按前边的分析连乘12个质因子就会超过20亿,因此只需要枚举12个即可
然后就过了orz
#include <cstdio>
#include <cstring>
#include <cmath>
#include <string>
#include <iostream>
#include <algorithm>
#include <queue>
#include <set>
#include <map>
using namespace std;
typedef long long ll;
#define pii pair<int, int>
#define mkpii make_pair<int, int>
#define pdi pair<double, int>
#define mkpdi make_pair<double, int>
#define pli pair<ll, int>
#define mkpli make_pair<ll, int>
#define rep(i, n) for(int i=0; i<(n); ++i)
#define for1(i,a,n) for(int i=(a);i<=(n);++i)
#define for2(i,a,n) for(int i=(a);i<(n);++i)
#define for3(i,a,n) for(int i=(a);i>=(n);--i)
#define for4(i,a,n) for(int i=(a);i>(n);--i)
#define CC(i,a) memset(i,a,sizeof(i))
#define read(a) a=getint()
#define print(a) printf("%d", a)
#define dbg(x) cout << (#x) << " = " << (x) << endl
#define error(x) (!(x)?puts("error"):0)
#define printarr2(a, b, c) for1(_, 1, b) { for1(__, 1, c) cout << a[_][__]; cout << endl; }
#define printarr1(a, b) for1(_, 1, b) cout << a[_] << '\t'; cout << endl
inline const int getint() { int r=0, k=1; char c=getchar(); for(; c<'0'||c>'9'; c=getchar()) if(c=='-') k=-1; for(; c>='0'&&c<='9'; c=getchar()) r=r*10+c-'0'; return k*r; }
inline const int max(const int &a, const int &b) { return a>b?a:b; }
inline const int min(const int &a, const int &b) { return a<b?a:b; } const ll p[13]={0,2,3,5,7,11,13,17,19,23,29,31,37};
ll n;
int ans1, ans2;
void dfs(int now, ll sum, int cnt, int last) {
if(sum>n || now>12) return;
if(ans2==cnt && ans1>sum) ans1=sum;
if(ans2<cnt) ans1=sum, ans2=cnt;
ll t=1;
for1(i, 0, last) {
dfs(now+1, sum*t, cnt*(i+1), i);
t*=p[now];
if(t>n) return;
}
} int main() {
read(n);
dfs(1, 1, 1, 30);
print(ans1);
return 0;
}
Description
对于任何正整数x,其约数的个数记作g(x)。例如g(1)=1、g(6)=4。
如果某个正整数x满足:g(x)>g(i) 0<i<x,则称x为反质数。例如,整数1,2,4,6等都是反质数。
现在给定一个数N,你能求出不超过N的最大的反质数么?
Input
一个数N(1<=N<=2,000,000,000)。
Output
不超过N的最大的反质数。
Sample Input
Sample Output
HINT
Source
【BZOJ】1053: [HAOI2007]反素数ant(贪心+dfs)的更多相关文章
- BZOJ 1053: [HAOI2007]反素数ant dfs
1053: [HAOI2007]反素数ant 题目连接: http://www.lydsy.com/JudgeOnline/problem.php?id=1053 Description 对于任何正整 ...
- BZOJ 1053 [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1948 Solved: 1094[Submit][St ...
- bzoj 1053: [HAOI2007]反素数ant 搜索
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 1497 Solved: 821[Submit][Sta ...
- BZOJ 1053 [HAOI2007]反素数ant 神奇的约数
本蒟蒻终于开始接触数学了...之前写的都忘了...忽然想起来某神犇在几个月前就切了FWT了... 给出三个结论: 1.1-N中的反素数是1-N中约数最多但是最小的数 2.1-N中的所有数的质因子种类不 ...
- bzoj 1053 [HAOI2007]反素数ant——关于质数的dfs / 打表
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=1053 写了个打表程序. #include<iostream> #include& ...
- BZOJ 1053 [HAOI2007]反素数ant(约数个数)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=1053 [题目大意] 于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6 ...
- 1053. [HAOI2007]反素数ant【DFS+结论】
Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0<i<x ,则称x为反质数.例如,整数 ...
- 【BZOJ】1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Description: g(x)表示x的约数个数,反素数:对于任意的i (i < x),均有g(i) < g(x),则x为反素数:现在输入不 ...
- 【BZOJ 1053】 1053: [HAOI2007]反素数ant (反素数)
1053: [HAOI2007]反素数ant Description 对于任何正整数x,其约数的个数记作g(x).例如g(1)=1.g(6)=4.如果某个正整数x满足:g(x)>g(i) 0&l ...
- BZOJ(8) 1053: [HAOI2007]反素数ant
1053: [HAOI2007]反素数ant Time Limit: 10 Sec Memory Limit: 162 MBSubmit: 4118 Solved: 2453[Submit][St ...
随机推荐
- 从头认识多线程-1.9 迫使线程停止的方法-return法
这一章节我们来讨论一下还有一种停止线程的方法-return 1.在主线程上面return,是把全部在执行的线程都停掉 package com.ray.deepintothread.ch01.topic ...
- Android Studio 怎样打开两个项目?
欢迎转载: 请注明 原创Url
- 工作总结 Rezor 里面的一些小知识----自定义类型 放在标签值中 会直接跳过去
0 的时候不报错 1 的时候 报错了 原因 是 imagesname[i] 索引超出了 为什么在 上面 报错呢? 不在这里报错呢? 说明了 Rezor 对于 自定义的变量 放在标签值里的时候,调 ...
- 用Reflector for .NET反编译dll文件(.net),把整个dll导出个cs插件
Reflector for .NET 下载地址: http://www.aisto.com/roeder/dotnet/ Reflector.FileDisassembler.zip下载地址: htt ...
- python split() 用法
字符串的split用法 说明:Python中没有字符类型的说法,只有字符串,这里所说的字符就是只包含一个字符的字符串!!!这里这样写的原因只是为了方便理解,仅此而已. 由于敢接触Python,所以不保 ...
- java程序猿常用Linux命令
1.查找文件 find / -name filename.txt 根据名称查找/目录下的filename.txt文件. find . -name "*.xml" 递归查找所有的xm ...
- elipse快捷键大全 elipse快捷键详解
1. ctrl+shift+r:打开资源 这可能是所有快捷键组合中最省时间的了.这组快捷键可以让你打开你的工作区中任何一个文件,而你只需要按下文件名或mask名中的前几个字母,比如applic*.xm ...
- Redis(十二):redis两种持久化方法对比分析
前言 最近在项目中使用到Redis做缓存,方便多个业务进程之间共享数据.由于Redis的数据都存放在内存中,如果没有配置持久化,redis重启后数据就全丢失了,于是需要开启redis的持久化功能,将数 ...
- CentOS下的强大的绘图工具 pinta
[root@ok ~]# yum search pinta Loaded plugins: fastestmirror, refresh-packagekit, security Loading mi ...
- bazel-编译一个源文件生成可执行程序
demo1 使用bazel编译一个源文件生成可执行程序简单示例 demo1目录树 demo1 ├── app │ ├── BUILD │ └── hello_world.cpp ├── README. ...