Kernel Methods (4) Kernel SVM
(本文假设你已经知道了hard margin SVM的基本知识.)
如果要为Kernel methods找一个最好搭档, 那肯定是SVM. SVM从90年代开始流行, 直至2012年被deep learning打败. 但这个打败也仅仅是在Computer Vision 领域. 可以说对现在的AI研究来说, 第一火的算法当属deep learning. 第二火的仍是SVM. 单纯的SVM是一个线性分类器, 能解决的问题不多. 是kernel methods为SVM插上了一双隐形的翅膀, 让它能翱翔于AI研究的天空, 因为kernel methods可以将线性SVM变成非线性的.
问题描述
- 给定:
- 一个training set \(D\), 由\(m\)个二元组\((x_i, y_i)\)组成.
- \(x_i\)是一个\(d\)维列向量, \(x_i \in R^d\)
- \(y_i = \pm 1\), 代表\(x_i\)所属类别
- \(i \in [1, m]\)
- 一个kernel function \(kappa\)
- 一个training set \(D\), 由\(m\)个二元组\((x_i, y_i)\)组成.
- 目标: 用D训练一个kernel svm分类器, 判断测试样本\(x \notin D\)的类别\(y\)
目标函数
假设\(\kappa\)对应的feature mapping function为\(\Phi\), 那么\(\Phi(x)\)将\(x\)从原始输入空间\(\chi:R^d\)映射到一个线性可分的特征空间\(H:R^n\). 这时用SVM对新得到的训练数据\((\Phi(x_i), y_i)\)进行线性分类.
SVM的优化目标是maximum margin. 这个margin是指正负两类decision boundaries的距离.
两个decision boundaries的方程为:
\[
w^T \Phi(x) + b = \pm 1
\]
它们的距离为:
\[
margin = \frac {2}{||w||}
\]
最大化\(d\)的值就是最小化\(||w||\)的值, 所以SVM的优化目标又可以写为:
\[
minimize : J(w) = \frac 12 w^T w
\]
因为需要正确分类所有的training data, 所以需要满足的约束条件为:
\[
y_i(w^T \Phi(x_i) + b) \ge 1, \forall i\in[1,m]
\]
对偶问题
上述优化问题的Lagrange multipliers function为:
\[
J(w, b, \alpha_1, \dots \alpha_m) = \frac 12 w^Tw - \sum_{i = 1}^m \alpha_i[y_i(w^T\Phi(x_i) + b) - 1], \alpha_i \ge 0
\]
它取得最小值的必要条件为
\[
\frac {\partial J}{\partial w} = w - \sum_{i = 1}^m \alpha_i y_i \Phi(x_i) = 0
\]
\[
\frac {\partial J}{\partial b} = \sum_{i = 1}^m \alpha_i y_i = 0
\]
\[
\to w = \sum_{i = 1}^m \alpha_i y_i \Phi(x_i) = Z^T \beta
\]
其中
\[
Z =
\left[
\begin{matrix}
\Phi(x_1)^T\\
\Phi(x_2)^T\\
\vdots \\
\Phi(x_m)^T
\end{matrix}
\right]
\qquad
\beta =
\left[
\begin{matrix}
\alpha_1y_1\\
\alpha_2y_2\\
\vdots \\
\alpha_my_m
\end{matrix}
\right]
\]
\(\to\)
\[
w^Tw = \beta^T Z Z^T \beta = \beta^TK\beta
\]
\[
w^T\Phi(x_i) = \beta^T Z \Phi(x_i) = \beta^T k_i^T = k_i\beta
\]
其中, \(K\)是kernel matrix, \(k_i\)是\(K\)的第\(i\)行.
代入 \(J(w, b, \alpha_1, \dots \alpha_m)\), 就得到了对偶问题:
\[maximumize: W(\alpha) = \sum_{i=1}^m \alpha_i + \frac 12 \beta^T K \beta - \sum_{i=1}^m \alpha_iy_ik_i\beta \]
\[ = \sum_{i=1}^m \alpha_i + \frac 12 \beta^T K \beta - \beta^T K \beta \]
\[ = \sum_{i=1}^m \alpha_i - \frac 12 \beta^T K \beta \]
\[ = \sum_{i=1}^m \alpha_i - \frac 12 \sum_{i=1}^m\sum_{j=1}^m \alpha_i\alpha_j y_i y_j \kappa(x_i, x_j) \]
它需要满足两个约束条件:
\((1)\sum_{i = 1}^m \alpha_i y_i = 0\)
\((2)\alpha_i \ge 0\)
可以解出\(W(\alpha)\)里包含的未知参数\(\alpha = (\alpha_1,\dots, \alpha_m)\).具体解法先略过.
得到\(w\)和\(b\)
\(\alpha\)已知后, 可以求得\(w\):
\[
w = \sum_{i = 1}^m \alpha_i y_i \Phi(x_i)
\]
现在就差\(b\)了. 如何求\(b\)呢? 现在回头想想SVM里的Support Vector的概念. 对于位于decision boudaries上的样本, 它们的\(y_i(w^T\Phi(x_i) + b) = 1\). 所以\(b\)可以根据支持向量, 即\(\alpha_i \neq 0\)对应的\(\Phi(x_i)\)来求得, 用\(\Phi(x_{sv})\)表示.
\[
b = y_{sv} - w^T\Phi(x_{sv}) = y_{sv} - \sum_{i = 1}^m \alpha_i y_i \Phi(x_i)^T \Phi(x_{sv}) = y_{sv} - \sum_{i=1}^m \alpha_i y_i \kappa(x_i, x_{sv})
\]
SV会存在多个, 理论上每个SV求出来的\(b\)应该是相等的. 但在现实情况中会存在计算误差, 所以一个更robust的做法是利用所有的SV求出各自的\(b\), 然后取平均值.
这个时候, \(w\)中还有\(\Phi\), 真实值是未知的, 但没关系. \(b\)则完全已知了.
预测新样本的类别
最后得到的SVM模型为
\[
y = sgn(w^T\Phi(x) + b) = sgn(\sum_{i = 1}^m \alpha_i y_i \Phi(x_i)\Phi(x) + b) = sgn(\sum_{i = 1}^m \alpha_i y_i \kappa(x_i, x) + b)
\]
Kernel Methods (4) Kernel SVM的更多相关文章
- Kernel Methods (2) Kernel function
几个重要的问题 现在已经知道了kernel function的定义, 以及使用kernel后可以将非线性问题转换成一个线性问题. 在使用kernel 方法时, 如果稍微思考一下的话, 就会遇到以下几个 ...
- Kernel Methods (5) Kernel PCA
先看一眼PCA与KPCA的可视化区别: 在PCA算法是怎么跟协方差矩阵/特征值/特征向量勾搭起来的?里已经推导过PCA算法的小半部分原理. 本文假设你已经知道了PCA算法的基本原理和步骤. 从原始输入 ...
- Kernel Methods (3) Kernel Linear Regression
Linear Regression 线性回归应该算得上是最简单的一种机器学习算法了吧. 它的问题定义为: 给定训练数据集\(D\), 由\(m\)个二元组\(x_i, y_i\)组成, 其中: \(x ...
- PRML读书会第六章 Kernel Methods(核函数,线性回归的Dual Representations,高斯过程 ,Gaussian Processes)
主讲人 网络上的尼采 (新浪微博:@Nietzsche_复杂网络机器学习) 网络上的尼采(813394698) 9:16:05 今天的主要内容:Kernel的基本知识,高斯过程.边思考边打字,有点慢, ...
- Kernel Methods - An conclusion
Kernel Methods理论的几个要点: 隐藏的特征映射函数\(\Phi\) 核函数\(\kappa\): 条件: 对称, 正半定; 合法的每个kernel function都能找到对应的\(\P ...
- 核方法(Kernel Methods)
核方法(Kernel Methods) 支持向量机(SVM)是机器学习中一个常见的算法,通过最大间隔的思想去求解一个优化问题,得到一个分类超平面.对于非线性问题,则是通过引入核函数,对特征进行映射(通 ...
- Kernel Methods for Deep Learning
目录 引 主要内容 与深度学习的联系 实验 Cho Y, Saul L K. Kernel Methods for Deep Learning[C]. neural information proce ...
- Kernel methods on spike train space for neuroscience: a tutorial
郑重声明:原文参见标题,如有侵权,请联系作者,将会撤销发布! 时序点过程:http://www.tensorinfinity.com/paper_154.html Abstract 在过去的十年中,人 ...
- Kernel Methods (6) The Representer Theorem
The Representer Theorem, 表示定理. 给定: 非空样本空间: \(\chi\) \(m\)个样本:\(\{(x_1, y_1), \dots, (x_m, y_m)\}, x_ ...
随机推荐
- ExtJs4 笔记(14) layout 布局
作者:李盼(Lipan)出处:[Lipan] (http://www.cnblogs.com/lipan/)版权声明:本文的版权归作者与博客园共有.转载时须注明本文的详细链接,否则作者将保留追究其法律 ...
- Codevs1378选课[树形DP|两种做法(多叉转二叉|树形DP+分组背包)---(▼皿▼#)----^___^]
题目描述 Description 学校实行学分制.每门的必修课都有固定的学分,同时还必须获得相应的选修课程学分.学校开设了N(N<300)门的选修课程,每个学生可选课程的数量M是给定的.学生选修 ...
- [No000022]他们说:得诺贝尔奖到底有多难?
- Android资料之-EditText中的inputType
在编写有EditText的自定义控件的时候可能会用到EditText的inputType属性,直接在xml里写这个属性的时候是用字符串型的,不过动态设置的时候就变成int型了,InputType里有定 ...
- Android之监听手机软键盘弹起与关闭
背景: 在很多App开发过程中需要在Activity中监听Android设备的软键盘弹起与关闭,但是Android似乎没有提供相关的的监听API给我们来调用,本文提供了一个可行的办法来监听软键盘的弹起 ...
- Netty Client重连实现
from:http://itindex.net/detail/54161-netty-client 当我们用Netty实现一个TCP client时,我们当然希望当连接断掉的时候Netty能够自动重连 ...
- linux下DHCP服务原理总结
DHCP(全称Dynamic host configuration protocol):动态主机配置协议DHCP工作在OSI的应用层,可以帮助计算机从指定的DHCP服务器获取配置信息的协议.(主要包括 ...
- 背包dp整理
01背包 动态规划是一种高效的算法.在数学和计算机科学中,是一种将复杂问题的分成多个简单的小问题思想 ---- 分而治之.因此我们使用动态规划的时候,原问题必须是重叠的子问题.运用动态规划设计的算法比 ...
- Apache Rewrite 拟静态配置
1.mod_rewrite 简介和配置 Rewirte主要的功能就是实现URL的跳转和隐藏真实地址,基于Perl语言的正则表达式规范.平时帮助我们实现拟静态,拟目录,域名跳转,防止盗链等 2.mod_ ...
- redis 学习笔记(4)-HA高可用方案Sentinel配置
上一节中介绍了master-slave模式,在最小配置:master.slave各一个节点的情况下,不管是master还是slave down掉一个,“完整的”读/写功能都将受影响,这在生产环境中显然 ...