1342. Enterprise

Time limit: 5.0 second
Memory limit: 64 MB
To bind a broom it’s a hard work. As there is a very big demand for this high-tech product an brooms binding enterprise is to have a big amount of production workshops. You are to help such an enterprise to allocate the work among the workshops. Each workshop can bind from 0 to K brooms a day. Economists of the enterprise found out that each bound broom has a different prime cost: in most cases the more brooms were bound a day the less prime cost has the last broom bound that day. However, there may be more complicated situations. As a first approximation you may assume every dependence linear. So decided the economists when they determined a dependence of the next in turn broom’s prime cost on the industrial output of the workshop. You are to find out the optimal work load of the workshops.

Input

The first line contains two integers N and M (1 ≤ NM ≤ 1000) — an amount of workshops and the required industrial output of brooms, respectively.
Then workshops description follows. The (i+1)-st line describes the i-th workshops with three numbers KiPi, and Qi (1 ≤ Ki ≤ 100; 0 ≤ PiQi ≤ 1000) — they are the maximal number of brooms that can be bound at the i-th workshop a day, the prime cost of the first broom and the prime cost of Ki-th broom at the i-th workshop. As it was mentioned above the cost of j-th broom’s production is the linear with respect to j function.

Output

If the enterprise can’t produce the required number of brooms your program is to output the maximal number of brooms V that can be bound at the enterprise.
Besides, you are to output the total costs on production of M (or V if the enterprise can’t bind M) brooms with optimal allocation of industrial outputs within two digits after a decimal point.
The output format is to be as in sample outputs below.

Samples

input output
2 10
6 20 15
100 100 100
Minimum possible cost: 505.00
2 10
5 30 14
1 20 20
Maximum possible amount: 6
Minimum possible cost: 130.00
Problem Author: Magaz Asanov and Pavel Egorov
Problem Source: USU Championship 2004
Difficulty: 861
 
题意:有n组东西 每组有若干个。价格成一个线性函数,给出上限,初始价格,终止价格。要求买够m个的最少价钱,不够m个输出买最多的最少价钱
分析:
就是比较裸的dp
 /**
Create By yzx - stupidboy
*/
#include <cstdio>
#include <cstring>
#include <cstdlib>
#include <cmath>
#include <deque>
#include <vector>
#include <queue>
#include <iostream>
#include <algorithm>
#include <map>
#include <set>
#include <ctime>
#include <iomanip>
using namespace std;
typedef long long LL;
typedef double DB;
#define For(i, s, t) for(int i = (s); i <= (t); i++)
#define Ford(i, s, t) for(int i = (s); i >= (t); i--)
#define Rep(i, t) for(int i = (0); i < (t); i++)
#define Repn(i, t) for(int i = ((t)-1); i >= (0); i--)
#define rep(i, x, t) for(int i = (x); i < (t); i++)
#define MIT (2147483647)
#define INF (1000000001)
#define MLL (1000000000000000001LL)
#define sz(x) ((int) (x).size())
#define clr(x, y) memset(x, y, sizeof(x))
#define puf push_front
#define pub push_back
#define pof pop_front
#define pob pop_back
#define ft first
#define sd second
#define mk make_pair
inline void SetIO(string Name)
{
string Input = Name+".in",
Output = Name+".out";
freopen(Input.c_str(), "r", stdin),
freopen(Output.c_str(), "w", stdout);
} inline int Getint()
{
int Ret = ;
char Ch = ' ';
bool Flag = ;
while(!(Ch >= '' && Ch <= ''))
{
if(Ch == '-') Flag ^= ;
Ch = getchar();
}
while(Ch >= '' && Ch <= '')
{
Ret = Ret * + Ch - '';
Ch = getchar();
}
return Flag ? -Ret : Ret;
} const int N = ;
int n, m;
DB Arr[N][], Dp[N][N]; inline void Input()
{
scanf("%d%d", &n, &m);
For(i, , n)
Rep(j, ) scanf("%lf", &Arr[i][j]);
} inline void Solve()
{
Dp[][] = ;
For(i, , m) Dp[][i] = 1.0 * INF;
DB Delta, x, Cnt;
int Len = ;
For(i, , n)
{
For(j, , m) Dp[i][j] = Dp[i - ][j];
if(Arr[i][] > ) Delta = (Arr[i][] - Arr[i][]) / (Arr[i][] - ); x = Cnt = Arr[i][];
For(j, , Arr[i][])
{
For(k, , Len)
if(Dp[i][k + j] > Dp[i - ][k] + x)
Dp[i][k + j] = Dp[i - ][k] + x;
Cnt += Delta;
x += Cnt;
} Len += Arr[i][];
if(Len > m) Len = m;
} if(Len < m)
printf("Maximum possible amount: %d\n", Len);
printf("Minimum possible cost: %.2f\n", Dp[n][Len]);
} int main()
{
#ifndef ONLINE_JUDGE
SetIO("E");
#endif
Input();
Solve();
return ;
}

ural 1342. Enterprise的更多相关文章

  1. Enterprise Solution 3.1 企业应用开发框架 .NET ERP/CRM/MIS 开发框架,C/S架构,SQL Server + ORM(LLBL Gen Pro) + Infragistics WinForms

    行业:基于数据库的制造行业管理软件,包含ERP.MRP.CRM.MIS.MES等企业管理软件 数据库平台:SQL Server 2005或以上 系统架构:C/S 开发技术 序号 领域 技术 1 数据库 ...

  2. 按照Enterprise Integration Pattern搭建服务系统

    在前一篇文章中,我们已经对Enterprise Integration Pattern中所包含的各个组成进行了简单地介绍.限于篇幅(20页Word以内),我并没有深入地讨论各个组成.但是如果要真正地按 ...

  3. Enterprise Integration Pattern - 组成简介

    近些年来,越来越多的Web应用正在逐渐向大型化的方向发展.它们通常都会包含一系列相互协作的子服务.在开发过程中,如何让这些子服务协同工作常常是软件开发人员所最为头疼的问题,如各个子服务之间的数据表示不 ...

  4. Enterprise Solution 开源项目资源汇总 Visual Studio Online 源代码托管 企业管理软件开发框架

    Enterprise Solution 是一套管理软件开发框架,在这个框架基础上开发出一套企业资源计划系统Enterprise Edition. 现将Enterprise Solution开发过程中遇 ...

  5. Windows 10 部署Enterprise Solution 5.5

    Windows 10正式版发布以后,新操作系统带来了许多的变化.现在新购买的电脑安装的系统应该是Windows 10.与当初用户不习惯Windows 7,购买新电脑后第一个想做的事情就是重装成XP,估 ...

  6. Enterprise Solution 企业资源计划管理软件 C/S架构,支持64位系统,企业全面应用集成,制造业信息化

    Enterprise Solution是一套完整的企业资源计划系统,功能符合众多制造业客户要求.系统以.NET Framework技术作为开发架构,完善的功能可有效地帮助企业进行运营策划,减低成本,如 ...

  7. 在数据库访问项目中使用微软企业库Enterprise Library,实现多种数据库的支持

    在我们开发很多项目中,数据访问都是必不可少的,有的需要访问Oracle.SQLServer.Mysql这些常规的数据库,也有可能访问SQLite.Access,或者一些我们可能不常用的PostgreS ...

  8. 时隔两个月再写的Echarts(Enterprise Charts,商业级数据图表)一文

    简介 ECharts,缩写来自Enterprise Charts,商业级数据图表,一个纯Javascript的图表库,可以流畅的运行在PC和移动设备上,兼容当前绝大部分浏览器(IE6/7/8/9/10 ...

  9. 数据库管理工具GUI - PremiumSoft Navicat Premium Enterprise 11.2.15 x86/x64 KEY

    转载自: 数据库管理工具GUI - PremiumSoft Navicat Premium Enterprise 11.2.15 x86/x64 KEY Navicat Premium(数据库管理工具 ...

随机推荐

  1. 模拟赛1031d1

    NP(np)Time Limit:1000ms Memory Limit:64MB题目描述LYK 喜欢研究一些比较困难的问题,比如 np 问题.这次它又遇到一个棘手的 np 问题.问题是这个样子的:有 ...

  2. 关于jQuery新的事件绑定机制on()的使用技巧

    关于jQuery新的事件绑定机制on()的使用技巧 http://www.jb51.net/article/36064.htm 本篇文章介绍了,关于jQuery新的事件绑定机制on()的使用技巧.需要 ...

  3. adb device 调试

    1. kill掉占用adb端口的进程 netstat -aon|findstr "5037" TCP 127.0.0.1:5037 0.0.0.0:0 LISTENING 6540 ...

  4. iOS - 日期的时间差(某年某月某日的某一天。。。)

    //首先创建格式化对象 NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init]; [dateFormatter setDateF ...

  5. Lattice 的 DDR IP核使用调试笔记之DDR 的 仿真

    —— 远航路上ing 整理于 博客园.转载请标明出处. 在上节建立完工程之后,要想明确DDR IP的使用细节,最好是做仿真.然后参考仿真来控制IP 核. 仿真的建立: 1.在IP核内的以下路径找到以下 ...

  6. Python中带参装饰器理解

  7. 如何设计一个 iOS 控件?(iOS 控件完全解析) (转)

    前言 一个控件从外在特征来说,主要是封装这几点: 交互方式 显示样式 数据使用 对外在特征的封装,能让我们在多种环境下达到 PM 对产品的要求,并且提到代码复用率,使维护工作保持在一个相对较小的范围内 ...

  8. Java 内存区域和GC机制

    目录 Java垃圾回收概况 Java内存区域 Java对象的访问方式 Java内存分配机制 Java GC机制 垃圾收集器 Java垃圾回收概况 Java GC(Garbage Collection, ...

  9. Java Eclipse进行断点调试

    如何调试Java程序? 大家最开始学习Java,都会觉得IDE调试好高端有木有,其实很简单了. 下文会尽量简单直观的教会你在Eclipse中调试,其他的IDE调试步骤也是类似的. 1.在你觉得有错的地 ...

  10. 系统调用方式文件编程,王明学learn

    系统调用方式文件编程 一.文件描述符 在Linux系统中,所有打开的文件也对应一个数字,这个数字由系统来分配,我们称之为:文件描述符. 二.函数学习 2.1打开文件  open 2.1.2 函数原形 ...