线段树 + 离散化


Description

The citizens of Bytetown, AB, could not stand that the candidates in the mayoral election campaign have been placing their electoral posters at all places at their whim. The city council has finally decided to build an electoral wall for placing the posters and introduce the following rules:

Every candidate can place exactly one poster on the wall.

All posters are of the same height equal to the height of the wall; the width of a poster can be any integer number of bytes (byte is the unit of length in Bytetown).

The wall is divided into segments and the width of each segment is one byte.

Each poster must completely cover a contiguous number of wall segments.

They have built a wall 10000000 bytes long (such that there is enough place for all candidates). When the electoral campaign was restarted, the candidates were placing their posters on the wall and their posters differed widely in width. Moreover, the candidates started placing their posters on wall segments already occupied by other posters. Everyone in Bytetown was curious whose posters will be visible (entirely or in part) on the last day before elections.

Your task is to find the number of visible posters when all the posters are placed given the information about posters' size, their place and order of placement on the electoral wall.

Input

The first line of input contains a number c giving the number of cases that follow. The first line of data for a single case contains number 1 <= n <= 10000. The subsequent n lines describe the posters in the order in which they were placed. The i-th line among the n lines contains two integer numbers li and ri which are the number of the wall segment occupied by the left end and the right end of the i-th poster, respectively. We know that for each 1 <= i <= n, 1 <= li <= ri <= 10000000. After the i-th poster is placed, it entirely covers all wall segments numbered li, li+1 ,... , ri.

Output

For each input data set print the number of visible posters after all the posters are placed.

The picture below illustrates the case of the sample input.

Sample Input

1

5

1 4

2 6

8 10

3 4

7 10

Sample Output

4


题目大意

在一面墙上,要贴上 n 张海报,给出海报的 l 和 r ,后贴上的海报会覆盖掉之前贴上的海报。问最后能看见几张海报。

很明显这是一道线段树的题。维护墙上每个点是哪张海报,区间修改,加懒惰标记。最后单点查询每个点是哪张海报。因为一张海报被分成的不同部分被看作是一张海报,所以用一个vis数组来标记是否出现过,如果没有则ans加一。

l 和 r 的区间范围是 \(1e7\) 如果直接开线段树可能会爆空间,所以需要离散化。

代码

#include <iostream>
#include <vector>
#include <algorithm>
#include <cstring>
using namespace std;
#define ls u<<1, l, mid
#define rs u<<1|1,mid+1,r const int maxn = 1e4 + 5;
int n,m;
int vis[maxn];
int nod[maxn << 4],add[maxn << 4]; struct qq {
int l,r;
}q[maxn]; vector <int> v;
inline int getid(int x) {return lower_bound(v.begin(),v.end(),x) - v.begin() + 1;} inline void pushdown(int u) {
nod[u<<1] = nod[u<<1|1] = add[u];
add[u<<1] = add[u<<1|1] = add[u];
add[u] = 0;
} void update(int u,int l,int r,int x,int y,int ad) {
if(l == x && r == y) {
nod[u] = ad;add[u] = ad;return;
}
if(add[u])pushdown(u);
int mid = (l + r) >> 1;
if(y <= mid) update(ls,x,y,ad);
else if(x > mid) update(rs,x,y,ad);
else {
update(ls,x,mid,ad);update(rs,mid+1,y,ad);
}
} int query(int u,int l,int r,int x) {
if(l == r)return nod[u];
if(add[u])pushdown(u);
int mid = (l + r) >> 1;
if(x <= mid) return query(ls,x);
return query(rs,x);
} int main() {
ios::sync_with_stdio(false); cin.tie(0);
int t;cin >> t;
while(t--) {
cin >> n;
for(int i = 1;i <= n;i++) {
cin >> q[i].l >> q[i].r;
v.push_back(q[i].l), v.push_back(q[i].r);
}
sort(v.begin(),v.end());v.erase(unique(v.begin(),v.end()),v.end());
m = v.end() - v.begin();
memset(nod,0,sizeof(nod));
memset(add,0,sizeof(add));
for(int i = 1;i <= n;i++) {
update(1,1,m,getid(q[i].l),getid(q[i].r),i);
}
int ans = 0;
memset(vis,0,sizeof(vis));
for(int i = 1;i <= m;i++) {
int x = query(1,1,m,i);
if(x && !vis[x]) ans++,vis[x] = 1;
}
cout << ans << endl;
} return 0;
}

[poj2528] Mayor's posters (线段树+离散化)的更多相关文章

  1. poj-----(2528)Mayor's posters(线段树区间更新及区间统计+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 43507   Accepted: 12693 ...

  2. POJ 2528 Mayor's posters(线段树+离散化)

    Mayor's posters 转载自:http://blog.csdn.net/winddreams/article/details/38443761 [题目链接]Mayor's posters [ ...

  3. poj 2528 Mayor's posters 线段树+离散化技巧

    poj 2528 Mayor's posters 题目链接: http://poj.org/problem?id=2528 思路: 线段树+离散化技巧(这里的离散化需要注意一下啊,题目数据弱看不出来) ...

  4. Mayor's posters (线段树+离散化)

    Mayor's posters Description The citizens of Bytetown, AB, could not stand that the candidates in the ...

  5. Mayor's posters(线段树+离散化POJ2528)

    Mayor's posters Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 51175 Accepted: 14820 Des ...

  6. POJ2528 Mayor's posters —— 线段树染色 + 离散化

    题目链接:https://vjudge.net/problem/POJ-2528 The citizens of Bytetown, AB, could not stand that the cand ...

  7. POJ2528:Mayor's posters(线段树区间更新+离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  8. poj2528 Mayor's posters(线段树区间修改+特殊离散化)

    Description The citizens of Bytetown, AB, could not stand that the candidates in the mayoral electio ...

  9. POJ 2528 Mayor's posters (线段树+离散化)

    Mayor's posters Time Limit: 1000MS   Memory Limit: 65536K Total Submissions:75394   Accepted: 21747 ...

随机推荐

  1. MySql的join(连接)查询 (三表 left join 写法)

    1.内连接:将两个表中存在连结关系的字段符合连接条件的记录形成记录集 Select A.name,B.name from A inner join B on A.id=B.id和 Select A.n ...

  2. 微信公众号内H5调用微信支付国内服务商模式

    最近在折微信公众号内H5用JSAPI调用微信支付,境内服务商版支付,微信支付给出的官方文档以及SDK不够详细,导至我们走了一些弯路,把他分享出来,我这边主要是用PHP开发,所以未加说的话示例都是PHP ...

  3. JAVA面向对象程序设计——实验报告

  4. jquery 设置表格奇偶数的颜色和行被选中的颜色样式jquery 设置表格奇偶数的颜色和行被选中的颜色样式

    query 代码 $(funtion(){ //设置偶数行和奇数行 $("tbody>tr:odd").addClass("ou");   //为奇数行设 ...

  5. 同时使用python2和Python3

    问题:thrift生成的是python2代码,之前使用的是Python3因此需要同时使用两个版本. 方案:将python3的可执行文件重命名为python3(默认为Python),这样使用pyhton ...

  6. Web Api 中Get 和 Post 请求的多种情况分析

    转自:http://www.cnblogs.com/babycool/p/3922738.html 来看看对于一般前台页面发起的get和post请求,我们在Web API中要如何来处理. 这里我使用J ...

  7. Linux系统下安装MongoDB 指南

    1.首先连接到Linux系统. 2.到MongoDB官网下载合适的MongoDB安装压缩包. 下载页面:https://www.mongodb.org/downloads#production. 这里 ...

  8. 《Linux内核分析》第七周 读书笔记

    <深入理解计算机系统>CHAPTER7阅读梳理 [学习时间:3hours] [学习内容:链接需要的代码&数据:链接机制:链接生成的目标文件] 一.链接概述 1.链接 定义:链接是将 ...

  9. find 找出大文件

    找到大文件 find . -type f -size +100M -exec du -smh {} \;

  10. JMeter学习-007-JMeter 断言实例之一 - 响应断言

    之前的文章中已经对如何录制 web 的请求进行了详细的描述,敬请参阅:JMeter学习-004-WEB脚本入门实战 同时,我们的手机应用(例如:京东.天猫.唯品会.携程.易迅 等等 App)所发出的请 ...