URAL 2080 莫队
题意 有m种卡 给出卡的使用序列 要求每次从卡堆的顶部抽一张出来 刚好符合序列 输出初始 卡堆的排序 再输出每次抽出卡用后 卡插回卡堆的时候 这张卡上面有几张卡
初始排序很容易就可以搞出来 但是需要注意的是 如果我有三种卡 而我只用了第一种 在输出卡堆里 仍然要输出没有用到的2和3
可以想到 既然每张卡都只有一种 那么 由这种规则来看 如果一张卡被抽出之后 接下来还要用 它插回去的位置上面 必须有在这个过程之中 要用的别的卡 很容易的就想到 插回去 上面有几张卡 取决于这次用这张卡和下次用这张卡之间有几种卡 有一种 插回去的位置上面就有几个 如果用了这张卡之后不会再用到了 那就无脑的插到卡堆的最下 即m-1
关于一张卡的两个相邻使用位置 用莫队来搞就好 n是1e5 抽象出来的询问也不到1e5 复杂度还是过的去的 需要注意的是 询问id是该询问的L
其实如果想到了插回取决于什么..就是一道莫队水题了..然而被初始卡堆的输出trick到了..orz 我的绝杀...
#include<stdio.h>
#include<string.h>
#include<iostream>
#include<vector>
#include<map>
#include<algorithm>
#include<math.h>
using namespace std;
struct node
{
int l,r,id;
};
int q[100050];
int a[100050];
int pl[100050];
int ans[100050];
node xw[100050];
int pos[100050];
vector<int >v[100050];
int cmp(node a,node b)
{
if(pos[a.l]==pos[b.l])
return a.r<b.r;
return a.l<b.l;
}
int an;
void add(int x)
{
int z = a[x];
if(q[z]==0)
an++;
q[z]++;
}
void del(int x)
{
int z= a[x];
if(q[z]==1)
an--;
q[z]--;
}
int main()
{
int n,m;
while(~scanf("%d%d",&m,&n))
{
for(int i=1; i<=m; i++)q[i]=0;
for(int i=1; i<=m; i++)
v[i].clear();
int sz=sqrt(n);
for(int i =1; i<=n; i++)
scanf("%d",&a[i]);
int cnt = 0;
for(int i =1; i<=n; i++)
{
pos[i]=i/sz;
v[a[i]].push_back(i);
if(q[a[i]]==0)
{
pl[++cnt]=a[i];
q[a[i]]++;
}
}
for(int i = 1; i<= m ;i++)
{
if(q[i]==0)
{
pl[++cnt]=i;
q[i]++;
}
}
int res=0;
for(int i=1; i<=m; i++)
{
int siz=v[i].size();
for(int j=0; j<siz; j++)
{
if(j+1==siz)
{
xw[++res].l=-1;
xw[res].r=-1;
}
else
{
xw[++res].l=v[i][j];
xw[res].r=v[i][j+1];
}
xw[res].id=v[i][j];
}
}
sort(xw+1,xw+1+n,cmp);
int l = 1;
int r = 0;
an = 0;
for(int i=1; i<=m; i++)q[i]=0;
for(int i = 1; i<=n; i++)
{
if(xw[i].l==-1)
{
ans[xw[i].id]=m-1;
continue;
}
while(l<xw[i].l)
{
del(l);
l++;
}
while(l>xw[i].l)
{
l--;
add(l);
}
while(r>xw[i].r)
{
del(r);
r--;
}
while(r<xw[i].r)
{
r++;
add(r);
}
ans[xw[i].id]=an-1;
}
for(int i = 1; i<=cnt; i++)
{
printf("%d",pl[i]);
if(i==cnt)
printf("\n");
else printf(" ");
}
for(int i = 1; i<=n; i++)
{
printf("%d\n",ans[i]);
}
}
}
URAL 2080 莫队的更多相关文章
- BZOJ 3289: Mato的文件管理[莫队算法 树状数组]
3289: Mato的文件管理 Time Limit: 40 Sec Memory Limit: 128 MBSubmit: 2399 Solved: 988[Submit][Status][Di ...
- NBUT 1457 莫队算法 离散化
Sona Time Limit:5000MS Memory Limit:65535KB 64bit IO Format: Submit Status Practice NBUT 145 ...
- 【填坑向】bzoj2038小Z的袜子 莫队
学莫队必做题,,,但是懒得写.今天来填个坑 莫队水题 莫队实际上就是按一个玄学顺序来离线计算询问,保证复杂度只会多一个n1/2,感觉是玄学(离线算法都很玄学) 易错点:要开long long(卡我半天 ...
- BZOJ 2038: [2009国家集训队]小Z的袜子(hose) [莫队算法]【学习笔记】
2038: [2009国家集训队]小Z的袜子(hose) Time Limit: 20 Sec Memory Limit: 259 MBSubmit: 7687 Solved: 3516[Subm ...
- NPY and girls-HDU5145莫队算法
Time Limit: 8000/4000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Problem Description ...
- Codeforces617 E . XOR and Favorite Number(莫队算法)
XOR and Favorite Number time limit per test: 4 seconds memory limit per test: 256 megabytes input: s ...
- Bzoj 2038---[2009国家集训队]小Z的袜子(hose) 莫队算法
题目链接 http://www.lydsy.com/JudgeOnline/problem.php?id=2038 Description 作为一个生活散漫的人,小Z每天早上都要耗费很久从一堆五颜六色 ...
- 【BZOJ 3735】苹果树 树上莫队(树分块+离线莫队+鬼畜的压行)
2016-05-09 UPD:学习了新的DFS序列分块,然后发现这个东西是战术核导弹?反正比下面的树分块不知道要快到哪里去了 #include<cmath> #include<cst ...
- 【BZOJ 2038】【2009 国家集训队】小Z的袜子(hose) 分块+莫队
$SDOI2016Day-1$临时抱佛脚学习一下莫队算法$233$ 我预感到自己省选要爆0hhh #include<cmath> #include<cstdio> #inclu ...
随机推荐
- blade用法
一.blade条件判断,foreach循环写法 @if(isset($fileInfo) && !empty($fileInfo)) @foreach($fileInfo as $k) ...
- 2.使用Package Control组件安装
安装Sublime Text 2插件的方法: 1.直接安装 安装Sublime text 2插件很方便,可以直接下载安装包解压缩到Packages目录(菜单->preferences->p ...
- 餐厅系统app版
- Static Resources In ASP.NET Core 1.0
静态资源包括HTML,CSS,图片和Js文件.在ASP.NET Core 1.0中,静态资源默认的所在目录是wwwroot,wwwroot可以在project.json中定义. Steps: 在www ...
- Java NIO示例:多人网络聊天室
一个多客户端聊天室,支持多客户端聊天,有如下功能: 功能1: 客户端通过Java NIO连接到服务端,支持多客户端的连接 功能2:客户端初次连接时,服务端提示输入昵称,如果昵称已经有人使用,提示重新输 ...
- React的第一步
首先了解React中所牵扯到的几个重要的概念 什么是React? 是Facebook的开发团队开发出来的一个用于构建用户界面个js库,最近才开源出来公布于世,它的初衷是用于创建“独立的视图组件”,一个 ...
- angularjs 实现 文件拖拽,缩略图显示
成果图: main-hugeScreen.html <div class="hbox hbox-auto-xs hbox-auto-sm" ng-controller=&qu ...
- 20145304 刘钦令 Java程序设计第二周学习总结
20145304 <Java程序设计>第2周学习总结 教材学习内容总结 java可区分基本类型和类类型(即参考类型)两大类型系统. 基本类型主要可区分为整数.字节.浮点数.字符与布尔. 整 ...
- 浅谈 LCA
LCA问题 一.概述: 在图论与计算科学中,两个节点 v 与 w 在有向无环图( directed acyclic graph , DAG )或树中的最近公共祖先(Lowest common ancc ...
- 如何在osg中删除EventHandler
最近在一个项目中需要动态的添加和删除EventHandler,添加的时候很顺利,使用view->addEventHandler()函数就可以了. 不过在删除的时候,出现点麻烦. 直接调用vi ...