Minimum Window Substring @LeetCode
不好做的一道题,发现String Algorithm可以出很多很难的题,特别是多指针,DP,数学推导的题。参考了许多资料:
http://leetcode.com/2010/11/finding-minimum-window-in-s-which.html
http://tianrunhe.wordpress.com/2013/03/23/minimum-window-substring/
最有用的最后一个资料,因为里面有一个例子详细说明了如何变化,我加上了一些中文备注:
For example,
S = “ADOBECODEBANC”
T = “ABC”
Minimum window is “BANC”.
Thoughts:
The idea is from here. I try to rephrase it a little bit here. The general idea is that we find a window first, not necessarily the minimum, but it’s the first one we could find, traveling from the beginning of S. We could easily do this by keeping a count of the target characters we have found. After finding an candidate solution, we try to optimize it. We do this by going forward in S and trying to see if we could replace the first character of our candidate. If we find one, we then find a new candidate and we update our knowledge about the minimum. We keep doing this until we reach the end of S. For the giving example:
- We start with our very first window: “ADOBEC”, windowSize = 6. We now have “A”:1, “B”:1, “C”:1 (保存在needToFind数组里)
- We skip the following character “ODE” since none of them is in our target T. We then see another “B” so we update “B”:2. Our candidate solution starts with an “A” so getting another “B” cannot make us a “trade”. (体现在代码就是只有满足hasFound[S.charAt(start)] > needToFind[S.charAt(start)]) 才能移动左指针start)
- We then see another “A” so we update “A”:2. Now we have two “A”s and we know we only need 1. If we keep the new position of this “A” and disregard the old one, we could move forward of our starting position of window. We move from A->D->O->B. Can we keep moving? Yes, since we know we have 2 “B”s so we can also disregard this one. So keep moving until we hit “C”: we only have 1 “C” so we have to stop. Therefore, we have a new candidate solution, “CODEBA”. Our new map is updated to “A”:1, “B”:1, “C”:1.
- We skip the next “N” (这里忽略所有不在T的字符:用needToFind[S.charAt(start)] == 0来判断) and we arrive at “C”. Now we have two “C”s so we can move forward the starting position of last candidate: we move along this path C->O->D->E until we hit “B”. We only have one “B” so we have to stop. We have yet another new candidate, “BANC”.
- We have hit the end of S so we just output our best candidate, which is “BANC”.
package Level4; /**
* Minimum Window Substring
*
* Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n). For example,
S = "ADOBECODEBANC"
T = "ABC"
Minimum window is "BANC". Note:
If there is no such window in S that covers all characters in T, return the emtpy string "". If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S. Discuss *
*/
public class S76 { public static void main(String[] args) {
} public String minWindow(String S, String T) {
// 因为处理的是字符,所以可以利用ASCII字符来保存
int[] needToFind = new int[256]; // 保存T中需要查找字符的个数,该数组一旦初始化完毕就不再改动
int[] hasFound = new int[256]; // 保存S中已经找到字符的个数,该数组会动态变化 for(int i=0; i<T.length(); i++){ // 初始化needToFind为需要查找字符的个数,
needToFind[T.charAt(i)]++; // 如例子中T为ABC,则将会被初始化为:needToFind[65]=1, nTF[66]=2, nTF[67]=3
} int count = 0; // 用于检测第一个符合T的S的字串
int minWindowSize = Integer.MAX_VALUE; // 最小窗口大小
int start = 0, end = 0; // 窗口的开始喝结束指针
String window = ""; // 最小窗口对应的字串 for(; end<S.length(); end++){ // 用end来遍历S字符串
if(needToFind[S.charAt(end)] == 0){ // 表示可以忽略的字符,即除了T(ABC)外的所有字符
continue;
}
char c = S.charAt(end);
hasFound[c]++; // 找到一个需要找的字符 if(hasFound[c] <= needToFind[c]){ // 如果找到的已经超过了需要的,就没必要继续增加count
count++;
}
if(count == T.length()){ // 该窗口中至少包含了T
while(needToFind[S.charAt(start)] == 0 || // 压缩窗口,往后移start指针,一种情况是start指针指的都是可忽略的字符
hasFound[S.charAt(start)] > needToFind[S.charAt(start)]){ // 另一种情况是已经找到字符的个数超过了需要找的个数,因此可以舍弃掉多余的部分
if(hasFound[S.charAt(start)] > needToFind[S.charAt(start)]){
hasFound[S.charAt(start)]--; // 舍弃掉多余的部分
}
start++; // 压缩窗口
} if(end-start+1 < minWindowSize){ // 保存最小窗口
minWindowSize = end-start+1;
window = S.substring(start, end+1);
}
}
}
return window;
}
}
Minimum Window Substring @LeetCode的更多相关文章
- Minimum Window Substring leetcode java
题目: Given a string S and a string T, find the minimum window in S which will contain all the charact ...
- LeetCode解题报告—— Minimum Window Substring && Largest Rectangle in Histogram
1. Minimum Window Substring Given a string S and a string T, find the minimum window in S which will ...
- 【LeetCode】76. Minimum Window Substring
Minimum Window Substring Given a string S and a string T, find the minimum window in S which will co ...
- 53. Minimum Window Substring
Minimum Window Substring Given a string S and a string T, find the minimum window in S which will co ...
- leetcode76. Minimum Window Substring
leetcode76. Minimum Window Substring 题意: 给定字符串S和字符串T,找到S中的最小窗口,其中将包含复杂度O(n)中T中的所有字符. 例如, S ="AD ...
- 刷题76. Minimum Window Substring
一.题目说明 题目76. Minimum Window Substring,求字符串S中最小连续字符串,包括字符串T中的所有字符,复杂度要求是O(n).难度是Hard! 二.我的解答 先说我的思路: ...
- [LeetCode] Minimum Window Substring 最小窗口子串
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
- leetcode@ [30/76] Substring with Concatenation of All Words & Minimum Window Substring (Hashtable, Two Pointers)
https://leetcode.com/problems/substring-with-concatenation-of-all-words/ You are given a string, s, ...
- [LeetCode] 76. Minimum Window Substring 解题思路
Given a string S and a string T, find the minimum window in S which will contain all the characters ...
随机推荐
- C++的常量折叠(二)
前面的C++的常量折叠(一)的最后留下了一个问题,那就是在声明i的时候,加上修饰符volatile关键字,发现结果输出的就不一样了,下面来说一下volatile这个关键字. C/C++中的volati ...
- [置顶] WebService调用工具(AXIS2)
package com.metarnet.util; import java.lang.reflect.InvocationHandler; import java.lang.reflect.Meth ...
- bzoj 1007 : [HNOI2008]水平可见直线 计算几何
题目链接 给出n条直线, 问从y轴上方向下看, 能看到哪些直线, 输出这些直线的编号. 首先我们按斜率排序, 然后依次加入一个栈里面, 如果刚加入的直线, 和之前的那条直线斜率相等, 那么显然之前的会 ...
- what does Html.HiddenFor () for ?
When I want to pass some value that won't be seen by users, I find it useful to use this. It can hel ...
- Linux远程连接与常用命令
要学linux ,一定得用命令界面的,怎么也得是shell语言,用就最难最原始的,用的人都是专家,历史最少也得30年,不管有三七二十一上来就敲ls ,先看看当前目录都有什么.一口专业的linux范儿, ...
- 25_Downloading An Image
一个App,从网上下载一张图片(给出图片地址),重新命名,然后保存到手机中,再从手机中取出显示在屏幕上. 难度不大,就是找图片很蛋疼,百度搜索出来的过一会儿会失效,Google搜索出来的有些需要FQ, ...
- 我的Fedora环境
Fedora现在也更新到了第20个版本,只是在15+以后的版本,大多数操作,都是大同小异的,也不必特意去关注版本号,只有对应到具体的软件,可能会因为库的版本,有或多或少的区别. 之前每次都喜欢按照一些 ...
- Noip2007提高组总结
两道基础题,后两题比较麻烦,算法想出来后,还是一些细枝末节的问题,需要特别注意,感觉Noip的题目质量还是挺高的,每做一套,都感觉会有大大小小不同的收获,就要月考了,最后把07年的题目总结一下,算是这 ...
- hdoj 3549 Flow Problem(最大网络流)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=3549 思路分析:该问题为裸的最大网络流问题,数据量不大,使用EdmondsKarp算法求解即可:需要注 ...
- POJ 2762 Going from u to v or from v to u? (Tarjan) - from lanshui_Yang
Description In order to make their sons brave, Jiajia and Wind take them to a big cave. The cave has ...