不好做的一道题,发现String Algorithm可以出很多很难的题,特别是多指针,DP,数学推导的题。参考了许多资料:

http://leetcode.com/2010/11/finding-minimum-window-in-s-which.html

http://www.geeksforgeeks.org/find-the-smallest-window-in-a-string-containing-all-characters-of-another-string/

http://tianrunhe.wordpress.com/2013/03/23/minimum-window-substring/

最有用的最后一个资料,因为里面有一个例子详细说明了如何变化,我加上了一些中文备注:

For example,
S = “ADOBECODEBANC”
T = “ABC”
Minimum window is “BANC”.

Thoughts:
The idea is from here. I try to rephrase it a little bit here. The general idea is that we find a window first, not necessarily the minimum, but it’s the first one we could find, traveling from the beginning of S. We could easily do this by keeping a count of the target characters we have found. After finding an candidate solution, we try to optimize it. We do this by going forward in S and trying to see if we could replace the first character of our candidate. If we find one, we then find a new candidate and we update our knowledge about the minimum. We keep doing this until we reach the end of S. For the giving example:

  1. We start with our very first window: “ADOBEC”, windowSize = 6. We now have “A”:1, “B”:1, “C”:1 (保存在needToFind数组里)
  2. We skip the following character “ODE” since none of them is in our target T. We then see another “B” so we update “B”:2. Our candidate solution starts with an “A” so getting another “B” cannot make us a “trade”. (体现在代码就是只有满足hasFound[S.charAt(start)] > needToFind[S.charAt(start)]) 才能移动左指针start)
  3. We then see another “A” so we update “A”:2. Now we have two “A”s and we know we only need 1. If we keep the new position of this “A” and disregard the old one, we could move forward of our starting position of window. We move from A->D->O->B. Can we keep moving? Yes, since we know we have 2 “B”s so we can also disregard this one. So keep moving until we hit “C”: we only have 1 “C” so we have to stop. Therefore, we have a new candidate solution, “CODEBA”. Our new map is updated to “A”:1, “B”:1, “C”:1.
  4. We skip the next “N” (这里忽略所有不在T的字符:用needToFind[S.charAt(start)] == 0来判断) and we arrive at “C”. Now we have two “C”s so we can move forward the starting position of last candidate: we move along this path C->O->D->E until we hit “B”. We only have one “B” so we have to stop. We have yet another new candidate, “BANC”.
  5. We have hit the end of S so we just output our best candidate, which is “BANC”.
package Level4;

/**
* Minimum Window Substring
*
* Given a string S and a string T, find the minimum window in S which will contain all the characters in T in complexity O(n). For example,
S = "ADOBECODEBANC"
T = "ABC"
Minimum window is "BANC". Note:
If there is no such window in S that covers all characters in T, return the emtpy string "". If there are multiple such windows, you are guaranteed that there will always be only one unique minimum window in S. Discuss *
*/
public class S76 { public static void main(String[] args) {
} public String minWindow(String S, String T) {
// 因为处理的是字符,所以可以利用ASCII字符来保存
int[] needToFind = new int[256]; // 保存T中需要查找字符的个数,该数组一旦初始化完毕就不再改动
int[] hasFound = new int[256]; // 保存S中已经找到字符的个数,该数组会动态变化 for(int i=0; i<T.length(); i++){ // 初始化needToFind为需要查找字符的个数,
needToFind[T.charAt(i)]++; // 如例子中T为ABC,则将会被初始化为:needToFind[65]=1, nTF[66]=2, nTF[67]=3
} int count = 0; // 用于检测第一个符合T的S的字串
int minWindowSize = Integer.MAX_VALUE; // 最小窗口大小
int start = 0, end = 0; // 窗口的开始喝结束指针
String window = ""; // 最小窗口对应的字串 for(; end<S.length(); end++){ // 用end来遍历S字符串
if(needToFind[S.charAt(end)] == 0){ // 表示可以忽略的字符,即除了T(ABC)外的所有字符
continue;
}
char c = S.charAt(end);
hasFound[c]++; // 找到一个需要找的字符 if(hasFound[c] <= needToFind[c]){ // 如果找到的已经超过了需要的,就没必要继续增加count
count++;
}
if(count == T.length()){ // 该窗口中至少包含了T
while(needToFind[S.charAt(start)] == 0 || // 压缩窗口,往后移start指针,一种情况是start指针指的都是可忽略的字符
hasFound[S.charAt(start)] > needToFind[S.charAt(start)]){ // 另一种情况是已经找到字符的个数超过了需要找的个数,因此可以舍弃掉多余的部分
if(hasFound[S.charAt(start)] > needToFind[S.charAt(start)]){
hasFound[S.charAt(start)]--; // 舍弃掉多余的部分
}
start++; // 压缩窗口
} if(end-start+1 < minWindowSize){ // 保存最小窗口
minWindowSize = end-start+1;
window = S.substring(start, end+1);
}
}
}
return window;
}
}

Minimum Window Substring @LeetCode的更多相关文章

  1. Minimum Window Substring leetcode java

    题目: Given a string S and a string T, find the minimum window in S which will contain all the charact ...

  2. LeetCode解题报告—— Minimum Window Substring && Largest Rectangle in Histogram

    1. Minimum Window Substring Given a string S and a string T, find the minimum window in S which will ...

  3. 【LeetCode】76. Minimum Window Substring

    Minimum Window Substring Given a string S and a string T, find the minimum window in S which will co ...

  4. 53. Minimum Window Substring

    Minimum Window Substring Given a string S and a string T, find the minimum window in S which will co ...

  5. leetcode76. Minimum Window Substring

    leetcode76. Minimum Window Substring 题意: 给定字符串S和字符串T,找到S中的最小窗口,其中将包含复杂度O(n)中T中的所有字符. 例如, S ="AD ...

  6. 刷题76. Minimum Window Substring

    一.题目说明 题目76. Minimum Window Substring,求字符串S中最小连续字符串,包括字符串T中的所有字符,复杂度要求是O(n).难度是Hard! 二.我的解答 先说我的思路: ...

  7. [LeetCode] Minimum Window Substring 最小窗口子串

    Given a string S and a string T, find the minimum window in S which will contain all the characters ...

  8. leetcode@ [30/76] Substring with Concatenation of All Words & Minimum Window Substring (Hashtable, Two Pointers)

    https://leetcode.com/problems/substring-with-concatenation-of-all-words/ You are given a string, s, ...

  9. [LeetCode] 76. Minimum Window Substring 解题思路

    Given a string S and a string T, find the minimum window in S which will contain all the characters ...

随机推荐

  1. C++重载赋值运算符

    这是一道C++的面试题,下面在这篇博客中分析一下这个问题.先上题目: //题目:如下为类型CMyString的声明,请为该类型添加赋值运算符函数. class CMyString { public: ...

  2. 多线程笔记--原子操作Interlocked系列函数

    前面写了一个多线程报数的功能,为了描述方便和代码简洁起见,只输出最后的报数结果来观察程序运行结果.这非常类似一个网站的客户访问统计,每个用户登录用一个线程模拟,线程运行时将一个表示计数的变量递增.程序 ...

  3. MSSQL 修改数据库的排序规则

    1.修改数据库排序规则 ALTER DATABASE [CHARACTER] COLLATE Chinese_PRC_CI_AS ; 2.修改表中列的排序规则 如果下列其中之一当前正在引用一个列,则无 ...

  4. web应用之监听器

    package com.log.service; import java.util.Enumeration; import javax.servlet.ServletContext; import j ...

  5. poj 2051 Argus(优先队列)

    题目链接: http://poj.org/problem?id=2051 思路分析: 优先级问题,使用优先队列求解:当执行某个任务后,再增加一个任务到队列中, 该任务的优先级为执行任务的时间加上其时间 ...

  6. android中使用jni对字符串加解密实现分析

    android中使用jni对字符串加解密实现分析 近期项目有个需求.就是要对用户的敏感信息进行加密处理,比方用户的账户password,手机号等私密信息.在java中,就对字符串的加解密我们能够使用A ...

  7. 令人作呕的OpenSSL

    在OpenSSL心脏出血之后,我相信非常多人都出了血,而且流了泪...网上瞬间出现了大量吐嘈OpenSSL的文章或段子,仿佛内心的窝火一瞬间被释放了出来,跟着这场疯闹,我也吐一下嘈,以雪这些年被Ope ...

  8. C#中泛型、程序集一些基本运用(Fifteenth Day)

    今天主要在学习了泛型和程序集以及一些细碎的知识的运用.下面我就把今天所学的总结一下. 理论: 泛型: * 英文名字是Generic,可以让多个类型共享一组代码,泛型允许我们声明类型参数化,可以用不同的 ...

  9. android 基础学习图片六progross

    加载进度条应用

  10. 「Foundation」结构体

    一.基本知识 Foundation—基础框架.框架中包含了很多开发中常用的数据类型,如结构体,枚举,类等,是其他ios框架的基础. 如果要想使用foundation框架中的数据类型,那么包含它的主头文 ...