题目大意:

求x属于[1,b]和 y属于[1,d]的 gcd(x,y)=k 的方案数

题解:

观察发现 gcd()=k 不好处理,想到将x=x/k,y=y/k 后 gcd(x,y)=1。。

即问题转化为求区间 [1,b/k]和 [1,d/k]的互质数对个数

由于题目规定 (x,y)和(y,x)是同一种,所以我们可以规定 x<y,,然后只需对每一个y求出比他小的即可

公共部分可以通过欧拉函数快速求出。。

非公共部分就不行了。。

所以就分解质因数,用容斥的方法求了

#include <iostream>
#include <stdio.h>
#include<string.h>
#include<algorithm>
#include<string>
#include<ctype.h>
using namespace std;
#define maxn 100000
int isnotprime[maxn+];
int num[maxn+];
int fac[maxn+][];
int prime[maxn];
int euler[maxn+];
int np;
int a,b,c,d,k,n,m;
long long ans;
void setprime()
{
np=;
memset(isnotprime,,sizeof(isnotprime));
for(int i=;i<=;i++)
{
if(!isnotprime[i])
prime[np++]=i;
for(int j=;j<np&&prime[j]*i<=;j++)
{
isnotprime[i*prime[j]]=;
if(i%prime[j]==)
break;
}
}
}
void findfac(int x)
{
num[x]=;
int p=x;
for(int i=;i<np;i++)
{
if(p%prime[i]==)
{
fac[x][num[x]++]=prime[i];
}
while(p%prime[i]==)
{
p/=prime[i];
}
}
if(p>)
{
fac[x][num[x]++]=p;
}
}
void setfac()
{
for(int i=;i<=maxn;i++)
{
findfac(i);
}
}
void phi()
{
for(int i=;i<=maxn;i++)
euler[i]=i;
for(int i=;i<=maxn;i+=)
euler[i]/=;
for(int i=;i<=maxn;i++)
{
if(euler[i]==i) //未被筛到。是素数,则用此素数来筛
{
for(int j=i;j<=maxn;j+=i)
{
euler[j]=euler[j]/i*(i-);
}
}
}
return ;
}
void ini()
{
scanf("%d%d%d%d%d",&a,&b,&c,&d,&k);
}
int iae(int x)
{
int res=;
int cur,tmp;
for(int i=;i<(<<num[x]);i++)
{
cur=;
tmp=;
for(int j=;j<num[x];j++)
{
if(i&(<<j))
{
cur*=fac[x][j];
tmp++;
}
}
if(tmp&)
{
res+=m/cur;
}
else
{
res-=m/cur;
}
}
return m-res;
}
int cas=;
void solve()
{
printf("Case %d: ",cas++);
if(k==)
{
puts("");
return;
}
m=min(b/k,d/k);
n=max(b/k,d/k);
ans=;
for(int i=;i<=m;i++)
{
ans+=euler[i];
}
for(int i=m+;i<=n;i++)
{
ans+=iae(i);
}
printf("%I64d\n",ans);
}
int main()
{
setprime();
setfac();
phi();
int t;
scanf("%d",&t);
while(t--)
{
ini();
solve();
}
return ;
}

hdu1695:数论+容斥的更多相关文章

  1. POJ 1150 The Last Non-zero Digit 数论+容斥

    POJ 1150 The Last Non-zero Digit 数论+容斥 题目地址: id=1150" rel="nofollow" style="colo ...

  2. Coprime (单色三角形+莫比乌斯反演(数论容斥))

    这道题,先说一下单色三角形吧,推荐一篇noip的论文<国家集训队2003论文集许智磊> 链接:https://wenku.baidu.com/view/e87725c52cc58bd631 ...

  3. 数论 + 容斥 - HDU 4059 The Boss on Mars

    The Boss on Mars Problem's Link Mean: 给定一个整数n,求1~n中所有与n互质的数的四次方的和.(1<=n<=1e8) analyse: 看似简单,倘若 ...

  4. 数论 + 容斥 - HDU 1695 GCD

    problem's Link mean 给定五个数a,b,c,d,k,从1~a中选一个数x,1~b中选一个数y,使得gcd(x,y)=k. 求满足条件的pair(x,y)数. analyse 由于b, ...

  5. HDU - 2204 Eddy's爱好 (数论+容斥)

    题意:求\(1 - N(1\le N \le 1e18)\)中,能表示成\(M^k(M>0,k>1)\)的数的个数 分析:正整数p可以表示成\(p = m^k = m^{r*k'}\)的形 ...

  6. 【bzoj2393】Cirno的完美算数教室 数论容斥

    Description ~Cirno发现了一种baka数,这种数呢~只含有2和⑨两种数字~~ 现在Cirno想知道~一个区间中~~有多少个数能被baka数整除~ 但是Cirno这么天才的妖精才不屑去数 ...

  7. CROC 2016 - Elimination Round (Rated Unofficial Edition) F - Cowslip Collections 数论 + 容斥

    F - Cowslip Collections http://codeforces.com/blog/entry/43868 这个题解讲的很好... #include<bits/stdc++.h ...

  8. HDU 5514 Frogs (数论容斥)

    题意:有n只青蛙,m个石头(围成圆圈).第i只青蛙每次只能条ai个石头,问最后所有青蛙跳过的石头的下标总和是多少? 析:首先可以知道的是第 i 只青蛙可以跳到 k * gcd(ai, m),然后我就计 ...

  9. UOJ #129 / BZOJ 4197 / 洛谷 P2150 - [NOI2015]寿司晚宴 (状压dp+数论+容斥)

    题面传送门 题意: 你有一个集合 \(S={2,3,\dots,n}\) 你要选择两个集合 \(A\) 和 \(B\),满足: \(A \subseteq S\),\(B \subseteq S\), ...

随机推荐

  1. hdu2209翻纸牌游戏

    翻纸牌游戏 Time Limit: 9000/3000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...

  2. Android设置上下边框或者左右边框

    <?xml version="1.0" encoding="utf-8"?> <com.sunskyjun.fwproject.widgts. ...

  3. 贪心-poj-3040-Allowance

    题目链接: http://poj.org/problem?id=3040 题目意思: 有n种(n<=20)面额的硬币,每种硬币面值能整除比它大的面值.给一个c,告诉每种硬币的面值和数量,求最多能 ...

  4. Wi-Fi漫游的工作原理

    Wi-Fi网络的一个极其重要的特点就是移动性.例如,一个人可以在使用Wi-Fi电话进行通话或是从服务器上下载大数据量的文件时穿过一幢建筑物.用户设备内部的Wi-Fi无线电可以从一个接入点漫游至另一个接 ...

  5. Cycling Label

    Cycling Label 来源: github/BBCyclingLabel Licence: Apache 2.0 作者: Bruno de Carvalho 分类: 标签(Label) 平台: ...

  6. linux防火墙开启-关闭

    1.永久性生效,重启后不会复原 开启: chkconfig iptables on 关闭: chkconfig iptables off 2. 即时生效,重启后复原 开启: service iptab ...

  7. springmvc的运行流程分析

    前几篇文章对springmvc讲解的很清楚,大家看下,有问题,我们再一起讨论. 其实springmvc最为重要是它的运行流程,接着,我们来分析一下,其运行过程,废话不多说,看图说话: 分析如下: 1, ...

  8. SQL Server 2005无日志文件附加数据库

    公司网站运营两年多了,日志文件超级大,在重装系统的时候,为了省事,就没有备份日志文件,而且是没有分离就把日志文件给删掉了(下次一定要记得先分离再删日志文件).结果造成数据库怎么都附加不上.出现错误. ...

  9. Jquery JSOPN在WebApi中的问题

    1. 客户端代码: $.ajax({ data: { name: 'zhangsan' }, url: apiUrl.getTwo('TestFourth'), dataType: 'jsonp', ...

  10. javascript 倒计时跳转.

    <!DOCTYPE html> <html> <head lang="en"> <meta charset="UTF-8&quo ...