POJ3268 Silver Cow Party(dijkstra+矩阵转置)
| Time Limit: 2000MS | Memory Limit: 65536K | |
| Total Submissions: 15156 | Accepted: 6843 |
Description
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big cow party to be held at farm #X (1 ≤ X ≤ N). A total of M (1 ≤ M ≤ 100,000) unidirectional (one-way roads connects pairs of farms; road i requires Ti (1 ≤ Ti ≤ 100) units of time to traverse.
Each cow must walk to the party and, when the party is over, return to her farm. Each cow is lazy and thus picks an optimal route with the shortest time. A cow's return route might be different from her original route to the party since roads are one-way.
Of all the cows, what is the longest amount of time a cow must spend walking to the party and back?
Input
Lines 2..M+1: Line i+1 describes road i with three space-separated integers: Ai, Bi, and Ti. The described road runs from farm Ai to farm Bi, requiring Ti time units to traverse.
Output
Sample Input
4 8 2
1 2 4
1 3 2
1 4 7
2 1 1
2 3 5
3 1 2
3 4 4
4 2 3
Sample Output
10
Hint
Source
#include <cstdio>
#include <iostream>
#include <cstdlib>
#include <algorithm>
#include <ctime>
#include <cmath>
#include <string>
#include <cstring>
#include <stack>
#include <queue>
#include <list>
#include <vector>
#include <map>
#include <set>
using namespace std; const int INF=0x3f3f3f3f;
const double eps=1e-;
const double PI=acos(-1.0);
const int maxn=+; int w[maxn][maxn];
int v[maxn], d[maxn], c[maxn];
int n, m, x; void dijkstra(int k)
{
memset(v, , sizeof(v));
for(int i = ; i <= n; i++) d[i] = (i==k ? : INF);
for(int i = ; i <= n; i++){
int x1, m = INF;
for(int y = ; y <= n; y++) if(!v[y] && d[y]<=m) m = d[x1=y];
v[x1] = ;
for(int y = ; y <= n; y++) d[y] = min(d[y], d[x1]+w[x1][y]);
}
}//dijkstra紫书模板
void tran() {
for(int i = ; i <= n; i++) {
for(int j = ; j <= i; j++)
swap(w[i][j], w[j][i]);
}
}//矩阵转置
int main()
{
while(~scanf("%d%d%d", &n, &m, &x)) {
int a, b, t;
memset(w, INF, sizeof(w));
for(int i = ; i < m; i++) {
scanf("%d%d%d", &a, &b, &t);
w[a][b] = min(w[a][b], t);
}
memset(c, , sizeof(c));
dijkstra(x);
for(int i = ; i <= n; i++) c[i] = d[i];
tran();
dijkstra(x);
int ans = -;
for(int i = ; i <= n; i++) {
c[i] += d[i];
ans = max(ans,c[i]);
}
printf("%d\n", ans);
}
}
POJ3268 Silver Cow Party(dijkstra+矩阵转置)的更多相关文章
- POJ3268 Silver Cow Party Dijkstra最短路
Description One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to atten ...
- poj3268 Silver Cow Party(两次SPFA || 两次Dijkstra)
题目链接 http://poj.org/problem?id=3268 题意 有向图中有n个结点,编号1~n,输入终点编号x,求其他结点到x结点来回最短路长度的最大值. 思路 最短路问题,有1000个 ...
- POJ 3268 Silver Cow Party (Dijkstra)
Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 13982 Accepted: 6307 ...
- POJ 3268 Silver Cow Party 最短路径+矩阵转换
Silver Cow Party Time Limit : 4000/2000ms (Java/Other) Memory Limit : 131072/65536K (Java/Other) T ...
- POJ3268 Silver Cow Party —— 最短路
题目链接:http://poj.org/problem?id=3268 Silver Cow Party Time Limit: 2000MS Memory Limit: 65536K Total ...
- POJ-3268 Silver Cow Party---正向+反向Dijkstra
题目链接: https://vjudge.net/problem/POJ-3268 题目大意: 有编号为1-N的牛,它们之间存在一些单向的路径.给定一头牛的编号X,其他牛要去拜访它并且拜访完之后要返回 ...
- poj3268 Silver Cow Party(两次dijkstra)
https://vjudge.net/problem/POJ-3268 一开始floyd超时了.. 对正图定点求最短,对逆图定点求最短,得到任意点到定点的往返最短路. #include<iost ...
- POJ3268 Silver Cow Party【最短路】
One cow from each of N farms (1 ≤ N ≤ 1000) conveniently numbered 1..N is going to attend the big co ...
- poj3268 Silver Cow Party(农场派对)
题目描述 原题来自:USACO 2007 Feb. Silver N(1≤N≤1000)N (1 \le N \le 1000)N(1≤N≤1000) 头牛要去参加一场在编号为 x(1≤x≤N)x(1 ...
随机推荐
- bzoj2741(分块+可持久化Trie)
题意中文我就不说了 解析: 分块+可持久化Trie,先得到前缀异或值,插入到Trie中,然后分块,对每一块,处理出dp[i][j](i代表第几块,j代表第几个位置),dp[i][j]代表以第i块开始的 ...
- [置顶] Android学习系列-把文件保存到SD卡上面(6)
Android学习系列-把文件保存到SD卡上面(5) 一般多媒体文件,大文件需要保存到SD卡中.关键点如下: 1,SD卡保存目录:mnt/sdcard,一般采用Environment.getExter ...
- bootstrap 导航布局
<!DOCTYPE html> <html> <head> <meta charset="utf-8"> <meta http ...
- python list 去重
print u'列表去重'a=[1,2,3,3,2,1,4,4,5,6,'a','a','b','c']print list(set(a))
- Block 代替for循环
NSDictionary *aDictionary = [[NSDictionary alloc]initWithObjectsAndKeys:", nil]; [aDictionary e ...
- 设置Eclipse启动JDK
打开eclipse安装目录下的eclipse.ini文件,将红色内容加入 -vm ../Java/jdk1.6.0_26/bin (或者指向具体目录:D:/software/jdk_1.8u91/bi ...
- STS(Spring Tool Suite)使用前准备
sts 的基础框架拿的eclipse的,你可以理解为eclipse + spring插件的高级升华版.在使用上可以很大限度的参考eclipse的操作. 首先,调整字体. 中文很麻烦的,因为编码问题.习 ...
- 编码规范(HTML)
code { font-family: "PT Mono", Menlo, "Courier New", monospace; padding: 2px 4px ...
- Ubuntu包管理命令 dpkg、apt和aptitude
起初GNU/Linux系统中仅仅有.tar.gz.用户 必须自己编译他们想使用的每个程序.在Debian出现之後,人们觉得有必要在系统 中加入一种机 制用来管理 安装在计算机上的软件包.人们将这套系统 ...
- kaggle之泰坦尼克的沉没
Titanic 沉没 参见:https://github.com/lijingpeng/kaggle 这是一个分类任务,特征包含离散特征和连续特征,数据如下:Kaggle地址.目标是根据数据特征预测一 ...