思路:一开始看到这题的时候想DP,可是发现貌似不行。。因为有前缀也有后缀,而且有的后缀会覆盖到现在的前缀,这就不满足无后效性了啊!

但是有个很巧妙的思路:如果我们知道a[i]的最大值,那么p的数量和q的数量也确定了。所以序列长度也确定了,设m为序列长度。

而且对于每个a[i]都代表了一个固定数量的p和q和长度。

因此,长度大于m/2的前缀,我们可以用总的p和总的q减去它,转换成小于等于m/2长度的前缀后缀。

这样我们可以设计DP为f[i][j][k],代表从左往右i个中有j个p,从右往左i个有k个p,这样f[(m+1)/2]的位置就是最终答案!

注意要记录一个pre数组记录这个状态的最优解是从哪个位置转移过来的。

 #include<algorithm>
#include<cstdio>
#include<cmath>
#include<cstring>
#include<iostream>
#define ll long long
ll a[];
const ll PW=;
const ll QW=;
int c[][],n,pre[][][][],w[][],f[][][];
int ans[],cn;
int read(){
char ch=getchar();int t=,f=;
while (ch<''||''<ch){if (ch=='-') f=-;ch=getchar();}
while (''<=ch&&ch<=''){t=t*+ch-'';ch=getchar();}
return t*f;
}
void init(){
n=read();
for (int i=;i<n;i++){
double x;scanf("%lf",&x);
a[i]=(ll)(x*+0.5);
}
}
void solve(){
int mxpos=;
for (int i=;i<n;i++){
if (a[i]>a[mxpos]) mxpos=i;
}
int totp=-,totq=-;
for (int i=;(ll)i*PW<=a[mxpos];i++)
if ((a[mxpos]-(ll)i*PW)%QW==){
totp=i;
totq=(int)((a[mxpos]-(ll)i*PW)/QW);
break;
}
for (int i=;i<n;i++){
int p=-,q=-;
for (int j=;(ll)j*PW<=a[i];j++)
if ((a[i]-(ll)j*PW)%QW==){
p=j;
q=(int)((a[i]-(ll)j*PW)/QW);
break;
}
if (p!=-&&p+q<=totp+totq){
c[cn][]=p;
c[cn][]=q;
cn++;
}
}
int m=totp+totq;
for (int i=;i<cn;i++){
if (c[i][]+c[i][]<=m/){
w[c[i][]+c[i][]][c[i][]]++;
}else{
w[m-c[i][]-c[i][]][totq-c[i][]]++;
}
}
f[][][]=;
for (int i=;i<=m/;i++)
for (int j=;j<=i;j++)
for (int k=;k<=i;k++){
int s=-;
for (int p=;p<=;p++){
for (int q=;q<=;q++){
if (j-p>=&&j-p<i&&k-q>=&&k-q<i&&f[i-][j-p][k-q]>s){
s=f[i-][j-p][k-q];
pre[i][j][k][]=p;
pre[i][j][k][]=q;
}
}
}
f[i][j][k]=s+w[i][j]+((k==j)?:w[i][k]);
}
int ansi=-,ansj=-,ansk=-;
for (int k=;k<=m%;k++)
for (int i=;i<=m/;i++){
int j=totq-k-i;
if (j>=&&j<=m/&&(ansi==-||f[m/][i][j]>f[m/][ansi][ansj])){
ansi=i;
ansj=j;
ansk=k;
}
}
if (m%) ans[m/]=ansk;
for (int i=m/;i>;i--){
int p=pre[i][ansi][ansj][];
int q=pre[i][ansi][ansj][];
ans[i-]=p;
ans[m-i]=q;
ansi-=p;
ansj-=q;
}
for (int i=;i<m;i++)
if (ans[i]) printf("Q");
else printf("P");
}
int main(){
init();
solve();
}

XJOI网上同步训练DAY1 T3的更多相关文章

  1. XJOI网上同步训练DAY5 T3

    就是对于一个数,我们去考虑把t*****减到(t-1)9999*的代价. #include<cstdio> #include<cmath> #include<algori ...

  2. XJOI网上同步训练DAY1 T2

    思路:似曾相识?...见http://www.cnblogs.com/qzqzgfy/p/5266874.html 一看时限还是4s!,于是就开开心心地打了70%的分,就是用容斥原理,就可以n^3解决 ...

  3. XJOI网上同步训练DAY1 T1

    思路:我们考虑由于没有人的区间会覆盖其他人,所以我们将区间按左端点排序,发现如果地盘长度已知,可以贪心地尽量往左放,来判断是否有解,因此做法很简单,就是二分答案,然后O(n)贪心判定,复杂度为O(nl ...

  4. XJOI网上同步测试DAY14 T3

    思路:tarjan把桥找出来,然后缩点,注意这里的缩点是:如果两个点之间的连边不是桥,那么就把他们缩起来,然后用一个lct维护,对于每个询问,如果官道连接的是两个联通块的话,就把他们连起来,否则我们就 ...

  5. XJOI网上同步训练DAY6 T2

    思路:记得FJ省队集训好像有过这题,可是我太弱了,根本不懂T_T #include<cstdio> #include<iostream> #include<cmath&g ...

  6. XJOI网上同步训练DAY6 T1

    思路:考试的时候直接想出来了,又有点担心复杂度,不过还是打了,居然是直接A掉,开心啊. 我们发现,Ai<=7,这一定是很重要的条件,我们考虑状态压缩,去枚举路径中出现了哪些数字,然后我们把原来n ...

  7. XJOI网上同步训练DAY5 T1

    思路:考虑得出,最终的集合一定是gcd=1的集合,那么我们枚举n个数中哪个数必须选,然后把它质因数分解,由于质数不会超过9个,可以状态压缩,去得出状态为0的dp值就是答案. #include<c ...

  8. XJOI网上同步训练DAY3 T2

    考试的时候已经想出来怎么做了,但是没有时间打了T_T 思路:我们考虑将询问以lim排序,然后树链剖分,把边作为线段树的节点,然后随着询问lim的增大,改变线段树中节点的信息,然后每次询问我们用树链剖分 ...

  9. XJOI网上同步训练DAY3 T1

    思路:看来我真是思博了,这么简单的题目居然没想到,而且我对复杂度的判定也有点问题.. 首先我们选了一个位置i的b,那一定只对i和以后的位置造成改变,因此我们可以这样看: 我们从前往后选,发现一个位置的 ...

随机推荐

  1. Codeforces 4D Mysterious Present

    http://codeforces.com/contest/4/problem/D 题目大意: 给出n个信封,这n个信封有长和宽,给出卡片的尺寸,求取能够装入卡片的最长的序列,序列满足后一个的长和宽一 ...

  2. linux下的shell和脚本

    1.各种Unix shell linux下的shell基本是从unix环境中的shell发展而来,贴一下wiki:其中我们常用的,可归类为Bourne Shell(/usr/bin/sh或/bin/s ...

  3. cxSplitter.HotZone 怎么给分隔条增加值

    请使用它的类名指定HotZoneClassName . cxSplitter1.ResizeUpdate := True; cxSplitter1.HotZoneClassName := 'TcxMe ...

  4. JMeter 参数化、检查点、集合点

      参数化:简单的来理解一下,我们录制了一个脚本,这个脚本中有登录操作,需要输入用户名和密码,假如系统不允许相同的用户名和密码同时登录,或者想更好的模拟多个用户来登录系统. 这个时候就需要对用户名和密 ...

  5. java.lang.OutOfMemoryError: Java heap space错误及处理办法

      以下是从网上找到的关于堆空间溢出的错误解决办法: java.lang.OutOfMemoryError: Java heap space ============================= ...

  6. LoadRunner监控windows资源报错Monitor name :Windows Resources. Cannot connect to machine

    目标机:被监控的机器,windows server 2008 R2. 测试机:执行control的机器,windows7 操作:在测试机上执行Control,添加windows的监控 问题现象:Mon ...

  7. redis主从 哨兵

    entinel是redis高可用的解决方案,sentinel系统(N个sentinel实例,N >= 1)可以监视一个或者多个redis master服务,以及这些master服务的所有从服务: ...

  8. 阿里云 RDS 怎么保证高可用性

    RDS在系统构建之初,从网络到硬件再到系统都是基于高可用设计,他可以做到故障30秒无缝转移,对应用完全透明. 当一个数据库实例发生故障时, 另一个会立即顶上,而且对应用是完全透明的.你无需变更应用的连 ...

  9. Socket学习笔记

    ..........(此处略去万万字)学习中曲折的过程不介绍了,直接说结果 我的学习方法,问自己三个问题,学习过程将围绕这三个问题进行 what:socket是什么 why:为什么要使用socket ...

  10. 让qq图标在自己的网站上显示方法

    代码如下: <div id="xixi" onmouseover="toBig()" style="top: 260px; left: 5px; ...