转载请注明作者:梦里风林

Github工程地址:https://github.com/ahangchen/GDLnotes

欢迎star,有问题可以到Issue区讨论

官方教程:

https://www.tensorflow.org/versions/master/how_tos/graph_viz/index.html

这份教程对应的代码有点过时了,请到我的GitHub获取最新的代码

TensorFlow自带的一个强大的可视化工具

功能

这是TensorFlow在MNIST实验数据上得到Tensorboard结果

  • Event: 展示训练过程中的统计数据(最值,均值等)变化情况
  • Image: 展示训练过程中记录的图像
  • Audio: 展示训练过程中记录的音频
  • Histogram: 展示训练过程中记录的数据的分布图

原理

  • 在运行过程中,记录结构化的数据
  • 运行一个本地服务器,监听6006端口
  • 请求时,分析记录的数据,绘制

实现

在构建graph的过程中,记录你想要追踪的Tensor

with tf.name_scope('output_act'):
hidden = tf.nn.relu6(tf.matmul(reshape, output_weights[0]) + output_biases)
tf.histogram_summary('output_act', hidden)

其中,

  • histogram_summary用于生成分布图,也可以用scalar_summary记录存数值
  • 使用scalar_summary的时候,tag和tensor的shape要一致
  • name_scope可以不写,但是当你需要在Graph中体现tensor之间的包含关系时,就要写了,像下面这样:
with tf.name_scope('input_cnn_filter'):
with tf.name_scope('input_weight'):
input_weights = tf.Variable(tf.truncated_normal(
[patch_size, patch_size, num_channels, depth], stddev=0.1), name='input_weight')
variable_summaries(input_weights, 'input_cnn_filter/input_weight')
with tf.name_scope('input_biases'):
input_biases = tf.Variable(tf.zeros([depth]), name='input_biases')
variable_summaries(input_weights, 'input_cnn_filter/input_biases')
  • 在Graph中会体现为一个input_cnn_filter,可以点开,里面有weight和biases
  • 用summary系列函数记录后,Tensorboard会根据graph中的依赖关系在Graph标签中展示对应的图结构
  • 官网封装了一个函数,可以调用来记录很多跟某个Tensor相关的数据:
def variable_summaries(var, name):
"""Attach a lot of summaries to a Tensor."""
with tf.name_scope('summaries'):
mean = tf.reduce_mean(var)
tf.scalar_summary('mean/' + name, mean)
with tf.name_scope('stddev'):
stddev = tf.sqrt(tf.reduce_sum(tf.square(var - mean)))
tf.scalar_summary('sttdev/' + name, stddev)
tf.scalar_summary('max/' + name, tf.reduce_max(var))
tf.scalar_summary('min/' + name, tf.reduce_min(var))
tf.histogram_summary(name, var)
  • 只有这样记录国max和min的Tensor才会出现在Event里面
  • Graph的最后要写一句这个,给session回调
merged = tf.merge_all_summaries()

Session 中调用

  • 构造两个writer,分别在train和valid的时候写数据:
train_writer = tf.train.SummaryWriter(summary_dir + '/train',
session.graph)
valid_writer = tf.train.SummaryWriter(summary_dir + '/valid')
  • 这里的summary_dir存放了运行过程中记录的数据,等下启动服务器要用到
  • 构造run_option和run_meta,在每个step运行session时进行设置:
summary, _, l, predictions =
session.run([merged, optimizer, loss, train_prediction], options=run_options, feed_dict=feed_dict)
  • 注意要把merged拿回来,并且设置options
  • 在每次训练时,记一次:
train_writer.add_summary(summary, step)
  • 在每次验证时,记一次:
valid_writer.add_summary(summary, step)
  • 达到一定训练次数后,记一次meta做一下标记
train_writer.add_run_metadata(run_metadata, 'step%03d' % step)

查看可视化结果

  • 启动TensorBoard服务器:
python安装路径/python TensorFlow安装路径/tensorflow/tensorboard/tensorboard.py --logdir=path/to/log-directory

注意这个python必须是安装了TensorFlow的python,tensorboard.py必须制定路径才能被python找到,logdir必须是前面创建两个writer时使用的路径

比如我的是:

/home/cwh/anaconda2/envs/tensorflow/bin/python /home/cwh/anaconda2/envs/tensorflow/lib/python2.7/site-packages/tensorflow/tensorboard/tensorboard.py --logdir=~/coding/python/GDLnotes/src/convnet/summary

使用python

强迫症踩坑后记

  • 之前我的cnn代码里有valid_prediction,所以画出来的graph有两条分支,不太清晰,所以只留了train一个分支

修改前:

修改后:

  • 多用with,进行包裹,这样才好看,正如官网说的,你的summary代码决定了你的图结构
  • 不是所有的tensor都有必要记录,但是Variable和placeholder最好都用summary记录一下,也是为了好看
  • 由于有了gradient的计算,所以与gradient计算相关的都会被拎出来,下次试一下用其他optimizer

我的CNN TensorBoard代码:cnn_board.py

参考资料

觉得我的文章对您有帮助的话,不妨点个star

土豪可以打赏支持,一分也是爱:

TensorFlow深度学习笔记 Tensorboard入门的更多相关文章

  1. Google TensorFlow深度学习笔记

    Google Deep Learning Notes Google 深度学习笔记 由于谷歌机器学习教程更新太慢,所以一边学习Deep Learning教程,经常总结是个好习惯,笔记目录奉上. Gith ...

  2. TensorFlow——深度学习笔记

    深度学习与传统机器学习的区别 传统机器学习输入的特征为人工提取的特征,例如人的身高.体重等,深度学习则不然,它接收的是基础特征,例如图片像素等,通过多层复杂特征提取获得. 深度学习.人工智能.机器学习 ...

  3. TensorFlow 深度学习笔记 卷积神经网络

    Convolutional Networks 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Is ...

  4. TensorFlow 深度学习笔记 TensorFlow实现与优化深度神经网络

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 全 ...

  5. TensorFlow深度学习笔记 循环神经网络实践

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 加 ...

  6. TensorFlow 深度学习笔记 逻辑回归 实践篇

    Practical Aspects of Learning 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有 ...

  7. TensorFlow 深度学习笔记 从线性分类器到深度神经网络

    转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到Issue区讨论 官方教程地址 视频/字幕下载 L ...

  8. TensorFlow深度学习笔记 文本与序列的深度模型

    Deep Models for Text and Sequence 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎st ...

  9. TensorFlow 深度学习笔记 Stochastic Optimization

    Stochastic Optimization 转载请注明作者:梦里风林 Github工程地址:https://github.com/ahangchen/GDLnotes 欢迎star,有问题可以到I ...

随机推荐

  1. 欧拉(BC)

    输入样例 1 1 2 1 3 2 输出样例 2 2 2f(x)打表找规律的 fx=x+1,fn(x)=x+n+1;然后用欧拉公式 #include <iostream> #include ...

  2. USB CCID "复杂"命令拾零?

    本文记录 USB CCID 标准中几个"复杂"的命令,复杂在于在这些命令身上花的时间较之简单的命令多许多或者是理解的时间比较晚,可能就是刚才.主要有以下几条:ccid_T0APDU ...

  3. javascript之Date

    JSON 日期转 JS日期,我们知道,日期类型转成JSON之后,返回的数据类似这样: /Date(1379944571737)/ 但是这种日期并不能直接显示,因为根本没有人知道这是什么意思,下面提供一 ...

  4. GET POST方法长度限制

    GET POST方法长度限制   1.    Get方法长度限制 Http Get方法提交的数据大小长度并没有限制,HTTP协议规范没有对URL长度进行限制.这个限制是特定的浏览器及服务器对它的限制. ...

  5. 2015第10周四-CSS小结

    这两天做前台页面发现个人在CSS前端方法很多基础知识都忘了,晚上又搜索学习了下,把相关内容摘录总结. CSS 规则由两个主要的部分构成:选择器,以及一条或多条声明. selector {declara ...

  6. 百度地图JavaScript API V1.5初级开发工具类

    /** * 百度地图使用工具类-v1.5 * @author boonya * @date 2013-7-7 * @address Chengdu,Sichuan,China * @email boo ...

  7. OpenCV视屏跟踪

    #include <stdio.h> #include <iostream> #include "opencv2/imgproc/imgproc.hpp" ...

  8. SqlServer 数据库日志无法收缩处理过程

    今天按常用方法收缩一个测试用的数据库日志,发现没法收缩! dbcc sqlperf(logspace)     USE [dbname] GO ALTER DATABASE [dbname] SET  ...

  9. iOS 系统架构 && 常用 framework

    整理自互联网,感谢原文作者! 1.iOS基于UNIX系统,因此从系统的稳定性上来说它要比其他操作系统的产品好很多 2.iOS的系统架构分为四层,由上到下一次为:可触摸层(Cocoa Touch lay ...

  10. 小明系列问题——小明序列(Lis 相距大于d的单调上升子序列)

    小明系列问题——小明序列 Time Limit: 3000/1000 MS (Java/Others)    Memory Limit: 65535/32768 K (Java/Others) Tot ...