【洛谷十月月测】 P3927 SAC E#1 - 一道中档题 Factorial
题目传送门:https://www.luogu.org/problemnew/show/P3927
题目大意:给你两个正整数n,k,求n!在k进制下末尾零的数量。
我们通过简单的数学分析,便可以发现,n!可以化为x*k^y(x,y∈N),而末尾零的数量,正是y。
经过进一步化简,$n! = x*\prod_{1}^{d(k)}d_{i}*y_{i}$,其中$d_{i}$为k的素因子,此处d(k)表示k的素因子个数,在已知d的情况下,求$y$并不复杂。
同时,我们也可以将k也化为这个格式,$k = *\prod_{1}^{d(k)}d_{i}*y'_{i}$。
通过进一步的归纳,我们发现:末尾零的数量为$min(\left \lfloor y_{i}/y'_{i} \right \rfloor)$。此题我们只需要求出$d_{i}$,随后求出$y_{i}$和$y‘_{i}$,最后简单计算即可得出答案。
考虑到$k≤10^{12}$,如果用常规的方法进行分解质因数求出所有$d_{i}$显然不行,于是我们用pollard_rho进行分解质因数即可。
如果你不知道什么是pollard_rho,传送门:http://blog.csdn.net/maxichu/article/details/45459533
时间复杂度为$O(k^{0.25}*log(n)*d(k))$
#include<iostream>
#include<cstdio>
#include<cstring>
#define L long long
#include<algorithm>
#include<map>
using namespace std;
L gcd(L x,L y){return y==?x:gcd(y,x%y);}
L mul(L x,L y,L MOD){
L ans=;
while(y){
if(y&) ans=(ans+x)%MOD;
y=y>>; x=(x<<)%MOD;
}
return ans;
}
bool pow(L x,L y,L MOD){
L ans=;
while(y){
if(y&) ans=mul(ans,x,MOD);
y=y>>; x=mul(x,x,MOD);
}
return ans!=;
}
bool check(L n){
if(n==) return ; if(n<||n%==) return ;
int t=; while(t--) if(pow(+rand()%(n-),n-,n)) return ;
return ;
}
L pollard_rho(L n,L c){
L x=+rand()%(n-),y=x,k=;
for(int i=;;i++){
x=(mul(x,x,n)+c)%n;
L d=gcd((y-x+n)%n,n);
if(d>) return d;
if(x==y) return n;
if(i==k) y=x,k<<=;
}
}
map<L,int> m;
void find(L n,L c){
if(n==) return;
if(check(n)){m[n]++; return;}
L p=n; while(p>=n) p=pollard_rho(n,c--);
find(p,c); find(n/p,c);
}
L get(L n,L d){
L ans=;
while(n) ans+=n/d,n=n/d;
return ans;
} int main(){
L n,k,minn=1e18; cin>>n>>k; find(k,);
for(map<L,int>:: iterator it=m.begin();it!=m.end();it++){
L num=it->first,sum=it->second;
minn=min(minn,get(n,num)/sum);
}
cout<<minn<<endl;
}
【洛谷十月月测】 P3927 SAC E#1 - 一道中档题 Factorial的更多相关文章
- 【Luogu】P3927 SAC E#1 - 一道中档题 Factorial
[题目]洛谷10月月赛R1 提高组 [题意]求n!在k进制下末尾0的个数,n<=1e18,k<=1e16. [题解]考虑10进制末尾0要考虑2和5,推广到k进制则将k分解质因数. 每个质因 ...
- 洛谷 P3927 SAC E#1 - 一道中档题 Factorial【数论//】
题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服,立刻就要算这个数在k进制表示下末尾0的个数. 但是SOL菌太菜了于是请 ...
- 洛谷-P3927 SAC E#1 - 一道中档题 Factorial
原址 题目背景 数据已修改 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. ...
- [洛谷P3927]SAC E#1 - 一道中档题 Factorial
题目大意:求$n!$在$k(k>1)$进制下末尾0的个数. 解题思路:一个数在十进制转k进制时,我们用短除法来做.容易发现,如果连续整除p个k,则末尾有p个0. 于是问题转化为$n!$能连续整除 ...
- SAC E#1 - 一道中档题 Factorial
题目背景 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SOL菌表示不服 ...
- noip模拟赛 SAC E#1 - 一道中档题 Factorial
题目背景 数据已修改 SOL君(炉石主播)和SOL菌(完美信息教室讲师)是好朋友. 题目描述 SOL君很喜欢阶乘.而SOL菌很喜欢研究进制. 这一天,SOL君跟SOL菌炫技,随口算出了n的阶乘. SO ...
- [HNOI2009]双递增序列(洛谷P4728)+小烈送菜(内部训练题)——奇妙的dp
博主学习本题的经过嘤嘤嘤: 7.22 : 听学长讲(一知半解)--自己推(推不出来)--网上看题解--以为自己会了(网上题解是错的)--发现错误以后又自己推(没推出来)--给学长发邮件--得到正确解法 ...
- 洛谷 P6776 - [NOI2020] 超现实树(找性质,神仙题)
洛谷题面传送门 nb tea 一道! 首先考虑怎样入手分析这个看似非常不可做的问题.首先题目涉及高度无穷的树,根本枚举不了.不过我们冷静一下就会发现,如果我们记 \(mx=\max\limits_{i ...
- 【Luogu】P3930 SAC E#1 - 一道大水题 Knight
[题目]洛谷10月月赛R1 提高组 [题意]给定n*n棋盘和<=16个棋子,给几个棋子种类和攻击范围,现我方只有一马,求能否吃王. [算法]状压+BFS [题解]16种棋子中,马不能吃马,直接处 ...
随机推荐
- ubuntu系统下安装pyspider:使用supervisord启动并管理pyspider进程配置及说明
首先感谢segmentfault.com的“imperat0r_”用户的文章和新浪的“小菜一碟”用户的文章.这是他们的配置文件.我参考也写了一个,在最后呢. 重点说明写在前面.本人用superviso ...
- C# 如何操作串口
1.首先要引用 System.IO.Ports using System; using System.Collections.Generic; using System.ComponentModel ...
- unidac 6.0.1 与kbmmw 的一点小摩擦
unidac 6.0.1 出来了,虽然支持sql server 直连等新特性,但是由于内部改动比较大, 导致与kmmmw 的集成起来存在有点小问题,就是如果数据库不是interbase 或者fire ...
- 微信第三方平台解密报错:Illegal key size
今天在交接别人代码的时候遇到的,微信第三方平台解密报的错误,原因: 如果密钥大于128, 会抛出java.security.InvalidKeyException: Illegal key size ...
- dev ChartControl 备忘
一个chartControl 里包括以个diagram(图表) diagram里可以设置 x-axis与y-axis ,另外还可以设置SecondaryXAxis与SecondaryYAxis,在Se ...
- 实现字符串函数,strlen(),strcpy(),strcmp(),strcat()
实现字符串函数,strlen(),strcpy(),strcmp(),strcat() #include<stdio.h> #include<stdlib.h> int my_ ...
- BZOJ 1007 [HNOI2008]水平可见直线 (栈)
1007: [HNOI2008]水平可见直线 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 7940 Solved: 3030[Submit][Sta ...
- python socket.error: [Errno 10061]
用Python写server和client时候如果server中sock.bind(('localhost', 8001)) 则client中sock.connect(('localhost', 8 ...
- python与JavaScript中正则表达式如何转换
使用python爬取网站数据的时候,总会遇到各种各样的反爬虫策略,有很大一部分都和JavaScript(以下简称为JS) 有关.在破解这些JS代码的过程中,经常会遇到模拟JS正则表达式的情况,因此,今 ...
- hdu 5025 bfs+状压
http://acm.hdu.edu.cn/showproblem.php?pid=5025 N*N矩阵 M个钥匙 K起点,T终点,S点需多花费1点且只需要一次,1-9表示9把钥匙,只有当前有I号钥匙 ...