【CS231N】3、Softmax分类器
wiki百科:softmax函数的本质就是将一个K维的任意实数向量压缩(映射)成另一个K维的实数向量,其中向量中的每个元素取值都介于(0,1)之间。
一、疑问
二、知识点
1. softmax函数公式的意义
在softmax函数,输入向量z的值有正有负,正数表示对应的特征对分类结果是积极的,负数则表示是消极的。因此,在softmax函数中,要 先计算\(e^z\), 目的是为了把所有的输入先处理到大于0的空间内,比如负数经过计算后会得到很接近0的数,因此归一化后,对应的概率也接近于0,这就很好得体现了softmax函数的思想——值大的对应概率大,值小的对应概率小。
2. softmax回归与logistic回归
- softmax回归,处理多分类问题;logisitc回归,处理二分类问题;
softmax回归可以推导出和二元分类logistic回归一致的公式;多个logistic回归通过叠加也同样可以实现多分类的效果;
softmax回归进行的多分类,类与类之间是互斥的,即一个输入只能被归为一类:
这一选择取决于你的类别之间是否互斥,例如,如果你有四个类别的音乐,分别为:古典音乐、乡村音乐、摇滚乐和爵士乐,那么你可以假设每个训练样本只会被打上一个标签(即:一首歌只能属于这四种音乐类型的其中一种),此时你应该使用类别数 k = 4 的softmax回归。(如果在你的数据集中,有的歌曲不属于以上四类的其中任何一类,那么你可以添加一个“其他类”,并将类别数 k 设为5。)
多个logistic回归进行多分类,输出的类别并不是互斥的,即"苹果"这个词语既属于"水果"类也属于"3C"类别:
如果你的四个类别如下:人声音乐、舞曲、影视原声、流行歌曲,那么这些类别之间并不是互斥的。例如:一首歌曲可以来源于影视原声,同时也包含人声 。这种情况下,使用4个二分类的logistic回归分类器更为合适。这样,对于每个新的音乐作品 ,我们的算法可以分别判断它是否属于各个类别。
3. 交叉熵损失
从概率论的角度出发,最小化正确分类的负对数概率,等同于进行最大似然估计。
4. 数值稳定问题
编程实现softmax函数计算的时候,中间项和
因为存在指数函数,所以数值可能非常大。除以大数值可能导致数值计算的不稳定,所以要使用归一化技巧——在分式的分子和分母都乘以一个常数
,并把它变换到求和之中,就能得到一个从数学上等价的公式:
的值可自由选择,不会影响计算结果,通过使用这个技巧可以提高计算中的数值稳定性。通常将
设为
。该技巧简单地说,就是应该将向量
中的数值进行平移,使得最大值为0。
【CS231N】3、Softmax分类器的更多相关文章
- 深度学习与计算机视觉系列(3)_线性SVM与SoftMax分类器
作者: 寒小阳 &&龙心尘 时间:2015年11月. 出处: http://blog.csdn.net/han_xiaoyang/article/details/49949535 ht ...
- Logistic 分类器与 softmax分类器
首先说明啊:logistic分类器是以Bernoulli(伯努利) 分布为模型建模的,它可以用来分两种类别:而softmax分类器以多项式分布(Multinomial Distribution)为模型 ...
- 『cs231n』线性分类器损失函数
代码部分 SVM损失函数 & SoftMax损失函数: 注意一下softmax损失的用法: SVM损失函数: import numpy as np def L_i(x, y, W): ''' ...
- [DeeplearningAI笔记]序列模型2.6Word2Vec/Skip-grams/hierarchical softmax classifier 分级softmax 分类器
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 Word2Vec Word2Vec相对于原先介绍的词嵌入的方法来说更加的简单快速. Mikolov T, Chen ...
- 线性Softmax分类器实战
1 概述 基础的理论知识参考线性SVM与Softmax分类器. 代码实现环境:python3 2 数据预处理 2.1 加载数据 将原始数据集放入"data/cifar10/"文件夹 ...
- 线性SVM与Softmax分类器
1 引入 上一篇介绍了图像分类问题.图像分类的任务,就是从已有的固定分类标签集合中选择一个并分配给一张图像.我们还介绍了k-Nearest Neighbor (k-NN)分类器,该分类器的基本思想是通 ...
- 【Python 代码】CS231n中Softmax线性分类器、非线性分类器对比举例(含python绘图显示结果)
1 #CS231n中线性.非线性分类器举例(Softmax) #注意其中反向传播的计算 # -*- coding: utf-8 -*- import numpy as np import matplo ...
- softmax分类器+cross entropy损失函数的求导
softmax是logisitic regression在多酚类问题上的推广,\(W=[w_1,w_2,...,w_c]\)为各个类的权重因子,\(b\)为各类的门槛值.不要想象成超平面,否则很难理解 ...
- 激活函数、正向传播、反向传播及softmax分类器,一篇就够了!
1. 深度学习有哪些应用 图像:图像识别.物体识别.图片美化.图片修复.目标检测. 自然语言处理:机器创作.个性化推荐.文本分类.翻译.自动纠错.情感分析. 数值预测.量化交易 2. 什么是神经网络 ...
随机推荐
- centos7.4安装redis以及配置外网访问
一.安装redis 第一步:下载redis安装包 wget http://download.redis.io/releases/redis-4.0.6.tar.gz [root@VM_34_108_c ...
- C语言之随机数函数( rand() )的使用方法
文章出自个人博客https://knightyun.github.io/2018/04/25/c-rand-number,转载请申明. 在程序设计中,难免会使用到随机值函数,其原理与语法大多类似,接下 ...
- 20155220 吴思其 《网络攻防》 Exp1 PC平台逆向破解(5)M
20155220 <网络攻防> Exp1 PC平台逆向破解(5)M 实践内容 通过对实践对象--20155220pwn1的linux可执行文件的修改或输入,完成以下三块: 手工修改可执行文 ...
- Python 学习计划
时间分为4周,全部自学,仅提供大纲.适用于Web方向: 1.Week1:读完<简明Python教程>,适应Python开发环境 2.Week2:写个爬虫,需要深入了解re.urllib2. ...
- 33 -FTP文件传输
1.需求 2.流程图 3.自己的版本 4.老师评语 5.修改后的代码 6.修改后版本
- 【mysql】排序方操作50题练习及其答案
1.创建数据库.相关表,并插入数据create database homework;use homework; create table class_grade(gid int primary key ...
- AGC 018 F - Two Trees
F - Two Trees 链接 题意: 给定两棵都是N个节点的有根树,节点均从1~N标号.给每个标号定一个权值(类似一号点的权值是x,那么两棵树中1号点的权值都是x),使在两棵树满足以任意节点为根的 ...
- SpringCloud-容错处理Hystrix熔断器(五)
前言:微服务架构应用的特点就是多服务,而服务层之间通过网络进行通信,从而支撑起整个应用系统,所以,各个微服务之间不可避免的存在耦合依赖关系.但任何的服务应用实例都不可能永远的健康或网络不可能永远的都相 ...
- CSS快速入门-代码目录
我们写python代码或者其他代码的时候,发现文件会越来越多,这时候你就觉得有必要把代码文件进行整理了. 对代码整理的整理主要思路: 1.按功能(比如:可执行程序文件.数据库文件.视图文件) 2.按类 ...
- java并发编程——并发容器
概述 java cocurrent包提供了很多并发容器,在提供并发控制的前提下,通过优化,提升性能.本文主要讨论常见的并发容器的实现机制和绝妙之处,但并不会对所有实现细节面面俱到. 为什么JUC需要提 ...