用python做文本情感分析
情感分析就是分析一句话说得是很主观还是客观描述,分析这句话表达的是积极的情绪还是消极的情绪。原理比如这么一句话:“这手机的画面极好,操作也比较流畅。不过拍照真的太烂了!系统也不好。”
① 情感词
要分析一句话是积极的还是消极的,最简单最基础的方法就是找出句子里面的情感词,积极的情感词比如:赞,好,顺手,华丽等,消极情感词比如:差,烂,坏,坑爹等。出现一个积极词就+1,出现一个消极词就-1。里面就有“好”,“流畅”两个积极情感词,“烂”一个消极情感词。那它的情感分值就是1+1-1+1=2. 很明显这个分值是不合理的,下面一步步修改它。
② 程度词
“好”,“流畅”和‘烂“前面都有一个程度修饰词。”极好“就比”较好“或者”好“的情感更强,”太烂“也比”有点烂“情感强得多。所以需要在找到情感词后往前找一下有没有程度修饰,并给不同的程度一个权值。比如”极“,”无比“,”太“就要把情感分值乘以4,”较“,”还算“就情感分值2,”只算“,”仅仅“这些就0.5了。那么这句话的情感分值就是:4x1+1x2-1x4+1=3
③ 感叹号
可以发现太烂了后面有感叹号,叹号意味着情感强烈。因此发现叹号可以为情感值+2. 那么这句话的情感分值就变成了:4x1+1x2-1x4-2+1 = 1
④ 否定词
明眼人一眼就看出最后面那个”好“并不是表示”好“,因为前面还有一个”不“字。所以在找到情感词的时候,需要往前找否定词。比如”不“,”不能“这些词。而且还要数这些否定词出现的次数,如果是单数,情感分值就*-1,但如果是偶数,那情感就没有反转,还是x1。在这句话里面,可以看出”好“前面只有一个”不“,所以”好“的情感值应该反转,x(-1)。 因此这句话的准确情感分值是:4x1+1x2-1x4-2+1x(-1 )= -1
⑤ 积极和消极分开来
再接下来,很明显就可以看出,这句话里面有褒有贬,不能用一个分值来表示它的情感倾向。而且这个权值的设置也会影响最终的情感分值,敏感度太高了。因此对这句话的最终的正确的处理,是得出这句话的一个积极分值,一个消极分值(这样消极分值也是正数,无需使用负数了)。它们同时代表了这句话的情感倾向。所以这句评论应该是”积极分值:6,消极分值:7
⑥ 以分句的情感为基础
再仔细一步,详细一点,一条评论的情感分值是由不同的分句加起来的,因此要得到一条评论的情感分值,就要先计算出评论中每个句子的情感分值。这条例子评论有四个分句,因此其结构如下([积极分值, 消极分值]):[[4, 0], [2, 0], [0, 6], [0, 1]]以上就是使用情感词典来进行情感分析的主要流程了,算法的设计也会按照这个思路来实现。
算法设计
第一步:读取评论数据,对评论进行分句。 第二步:查找对分句的情感词,记录积极还是消极,以及位置。 第三步:往情感词前查找程度词,找到就停止搜寻。为程度词设权值,乘以情感值。 第四步:往情感词前查找否定词,找完全部否定词,若数量为奇数,乘以-1,若为偶数,乘以1。 第五步:判断分句结尾是否有感叹号,有叹号则往前寻找情感词,有则相应的情感值+2。 第六步:计算完一条评论所有分句的情感值,用数组(list)记录起来。 第七步:计算并记录所有评论的情感值。 第八步:通过分句计算每条评论的积极情感均值,消极情感均值,积极情感方差,消极情感方差。
用python做文本情感分析的更多相关文章
- 基于 Spark 的文本情感分析
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.ht ...
- NLP入门(十)使用LSTM进行文本情感分析
情感分析简介 文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性 ...
- LSTM实现中文文本情感分析
1. 背景介绍 文本情感分析是在文本分析领域的典型任务,实用价值很高.本模型是第一个上手实现的深度学习模型,目的是对深度学习做一个初步的了解,并入门深度学习在文本分析领域的应用.在进行模型的上手实现之 ...
- TensorFlow实现文本情感分析详解
http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句 ...
- TensorFlow文本情感分析实现
TensorFlow文本情感分析实现 前面介绍了如何将卷积网络应用于图像.本文将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句子或文档表示为矩阵,则该矩阵与其中每个单元 ...
- LSTM 文本情感分析/序列分类 Keras
LSTM 文本情感分析/序列分类 Keras 请参考 http://spaces.ac.cn/archives/3414/ neg.xls是这样的 pos.xls是这样的neg=pd.read_e ...
- 【转】用python实现简单的文本情感分析
import jieba import numpy as np # 打开词典文件,返回列表 def open_dict(Dict='hahah',path = r'/Users/zhangzhengh ...
- Python爬虫和情感分析简介
摘要 这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果. 不同于其他专注爬虫技术的介绍,这里首先阐述爬取网络数据动机,接着 ...
- 文本情感分析(一):基于词袋模型(VSM、LSA、n-gram)的文本表示
现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习 ...
随机推荐
- 吴裕雄 python神经网络 水果图片识别(2)
import osimport numpy as npimport matplotlib.pyplot as pltfrom skimage import color,data,transform,i ...
- docker 配置远程访问
系统: centos 7 Docker version 1.12.6 yum 安装的 #yum install docker docker server在192.168.111.120上 # vim ...
- MySql频繁查询、插入数据
当我们需要频繁地从数据库查询.插入数据时,可以将这些数据库操作汇集写到同一个类里,作为工具类直接调用. 将数据库的具体信息保存在.properties文件中,用log4j作为日志记录 MySql.ja ...
- 数字与字符串之间的转换以及%f与%lf的输入输出用法区别
1.C++字符串与C字符串的转换: (1)string --> char * string str("OK"); strcpy(p,str.c_str());//p是char ...
- joinablequeue模块 生产者消费者模型 Manager模块 进程池 管道
一.生产者消费者 主要是为解耦(借助队列来实现生产者消费者模型) import queue # 不能进行多进程之间的数据传输 (1)from multiprocessing import Queue ...
- Tomb Raider(暴力模拟)
Tomb Raider https://hihocoder.com/problemset/problem/1829?sid=1394836 时间限制:1000ms 单点时限:1000ms 内存限制:2 ...
- jquery 赋值时不触发change事件解决
$("#optionsId").change(function(){ $("#selectOptionsText").val('测试'); }); $(&quo ...
- discuz的diy功能介绍
可以通过页面操作的方式,完成页面布局设计,数据聚合,样式等常见的页面处理功能. 以管理员登陆discuz的前台时,会出现一个diy按钮. 流程,先设计框架,再完成数据的聚合. 定义模板时, ...
- css3阴影效果
http://blog.csdn.net/freshlover/article/details/7610269
- OSGi 系列(七)之服务的监听、跟踪、声明等
OSGi 系列(七)之服务的监听.跟踪.声明等 1. OSGi 服务的事件监听 和 bundle 的事件监听类似,服务的事件监听是在服务注册.注销,属性被修改的时候,OSGi 框架会发出各种不同的事件 ...