Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14902   Accepted: 7963

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
 /* ***********************************************
Author :kuangbin
Created Time :2013-9-5 0:09:55
File Name :F:\2013ACM练习\专题学习\LCA\POJ1330.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* LCA (POJ 1330)
* 在线算法 DFS + ST
*/
const int MAXN = ;
int rmq[*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[*MAXN];
int dp[*MAXN][];//最小值对应的下标
void init(int n)
{
mm[] = -;
for(int i = ;i <= n;i++)
{
mm[i] = ((i&(i-)) == )?mm[i-]+:mm[i-];
dp[i][] = i;
}
for(int j = ; j <= mm[n];j++)
for(int i = ; i + (<<j) - <= n; i++)
dp[i][j] = rmq[dp[i][j-]] < rmq[dp[i+(<<(j-))][j-]]?dp[i][j-]:dp[i+(<<(j-))][j-];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+];
return rmq[dp[a][k]] <= rmq[dp[b-(<<k)+][k]]?dp[a][k]:dp[b-(<<k)+][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*];
int tot,head[MAXN]; int F[MAXN*];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = ;
dfs(root,root,);
st.init(*node_num-);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool flag[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int N;
int u,v;
scanf("%d",&T);
while(T--)
{
scanf("%d",&N);
init();
memset(flag,false,sizeof(flag));
for(int i = ; i < N;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
flag[v] = true;
}
int root;
for(int i = ; i <= N;i++)
if(!flag[i])
{
root = i;
break;
}
LCA_init(root,N);
scanf("%d%d",&u,&v);
printf("%d\n",query_lca(u,v));
}
return ;
}

POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

  2. POJ 1330 Nearest Common Ancestors (dfs+ST在线算法)

    详细讲解见:https://blog.csdn.net/liangzhaoyang1/article/details/52549822 zz:https://www.cnblogs.com/kuang ...

  3. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  4. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  5. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  6. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  7. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  8. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  9. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  10. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

随机推荐

  1. python基础--类的方法

    一:类的方法说明 类的方法分为实例方法,析构方法,构造方法,类方法,静态方法,属性方法,等等 类方法和静态方法都可以被类和类实例调用,类实例方法仅可以被类实例调用 类方法的隐含调用参数是类,而类实例方 ...

  2. QUnit 实践一

    项目准备启用Qunit, 先来尝试一下. 不说废话,上代码: <!DOCTYPE HTML> <html> <head> <meta http-equiv=& ...

  3. springMVC源码分析--HttpMessageConverter参数read操作(二)

    上一篇博客springMVC源码分析--HttpMessageConverter数据转化(一)中我们简单介绍了一下HttpMessageConverter接口提供的几个方法,主要有以下几个方法: (1 ...

  4. SQl查询数据库库名,表名、表的列名

    查询数据库 select * From master.dbo.sysdatabases where name='数据库名' and status<>512   --读取库中的所有表名 (当 ...

  5. gtk+学习笔记(六)

    今天用到了滚动窗口和微调按钮,根据网上的信息,简单总结下用法. 滚动窗口只能添加一个控件到其中 scrolled=gtk_scrolled_window_new(NULL,NULL); /*创建滚动窗 ...

  6. 关于利用GPG加解密的实验

    GnuPG(GNU Privacy Guard,简称:GPG)为一款免费开源的使用非对称密钥加密(asymmetric cryptography)之软件,最初由Werner Koch开发,该软件使用非 ...

  7. 如何用python解析mysqldump文件

    一.前言 最近在做离线数据导入HBase项目,涉及将存储在Mysql中的历史数据通过bulkload的方式导入HBase.由于源数据已经不在DB中,而是以文件形式存储在机器磁盘,此文件是mysqldu ...

  8. day7回顾

    静态方法: 与类无关,不能访问类里的任何属性和方法 类方法: 只能访问类变量 属性@property 把一个方法变成一个静态属性 反射 getattr(obj,str) setattr(obj,str ...

  9. 关于C语言的几个考试编程题目

    提交要求:1:邮件名称:学号后三位-题目编号-姓名-期中考试.例如:098-1-沈苗-期中考试2:不用附件提交,直接写邮件,内容包括编程思路(写一段自己对题目的认识.思路.技术细节等).源代码.运行结 ...

  10. Linux下Github的使用方法

    1 Linux下Git和GitHub环境的搭建 安装Git, 使用命令sudo apt-get install git 创建GitHub帐号 生成ssh key,使用命令 ssh-keygen -t ...