Nearest Common Ancestors
Time Limit: 1000MS   Memory Limit: 10000K
Total Submissions: 14902   Accepted: 7963

Description

A rooted tree is a well-known data structure in computer science and engineering. An example is shown below:

 
In the figure, each node is labeled with an integer from {1, 2,...,16}. Node 8 is the root of the tree. Node x is an ancestor of node y if node x is in the path between the root and node y. For example, node 4 is an ancestor of node 16. Node 10 is also an ancestor of node 16. As a matter of fact, nodes 8, 4, 10, and 16 are the ancestors of node 16. Remember that a node is an ancestor of itself. Nodes 8, 4, 6, and 7 are the ancestors of node 7. A node x is called a common ancestor of two different nodes y and z if node x is an ancestor of node y and an ancestor of node z. Thus, nodes 8 and 4 are the common ancestors of nodes 16 and 7. A node x is called the nearest common ancestor of nodes y and z if x is a common ancestor of y and z and nearest to y and z among their common ancestors. Hence, the nearest common ancestor of nodes 16 and 7 is node 4. Node 4 is nearer to nodes 16 and 7 than node 8 is.

For other examples, the nearest common ancestor of nodes 2 and 3 is node 10, the nearest common ancestor of nodes 6 and 13 is node 8, and the nearest common ancestor of nodes 4 and 12 is node 4. In the last example, if y is an ancestor of z, then the nearest common ancestor of y and z is y.

Write a program that finds the nearest common ancestor of two distinct nodes in a tree.

Input

The input consists of T test cases. The number of test cases (T) is given in the first line of the input file. Each test case starts with a line containing an integer N , the number of nodes in a tree, 2<=N<=10,000. The nodes are labeled with integers 1, 2,..., N. Each of the next N -1 lines contains a pair of integers that represent an edge --the first integer is the parent node of the second integer. Note that a tree with N nodes has exactly N - 1 edges. The last line of each test case contains two distinct integers whose nearest common ancestor is to be computed.

Output

Print exactly one line for each test case. The line should contain the integer that is the nearest common ancestor.

Sample Input

2
16
1 14
8 5
10 16
5 9
4 6
8 4
4 10
1 13
6 15
10 11
6 7
10 2
16 3
8 1
16 12
16 7
5
2 3
3 4
3 1
1 5
3 5

Sample Output

4
3
 /* ***********************************************
Author :kuangbin
Created Time :2013-9-5 0:09:55
File Name :F:\2013ACM练习\专题学习\LCA\POJ1330.cpp
************************************************ */ #include <stdio.h>
#include <string.h>
#include <iostream>
#include <algorithm>
#include <vector>
#include <queue>
#include <set>
#include <map>
#include <string>
#include <math.h>
#include <stdlib.h>
#include <time.h>
using namespace std;
/*
* LCA (POJ 1330)
* 在线算法 DFS + ST
*/
const int MAXN = ;
int rmq[*MAXN];//rmq数组,就是欧拉序列对应的深度序列
struct ST
{
int mm[*MAXN];
int dp[*MAXN][];//最小值对应的下标
void init(int n)
{
mm[] = -;
for(int i = ;i <= n;i++)
{
mm[i] = ((i&(i-)) == )?mm[i-]+:mm[i-];
dp[i][] = i;
}
for(int j = ; j <= mm[n];j++)
for(int i = ; i + (<<j) - <= n; i++)
dp[i][j] = rmq[dp[i][j-]] < rmq[dp[i+(<<(j-))][j-]]?dp[i][j-]:dp[i+(<<(j-))][j-];
}
int query(int a,int b)//查询[a,b]之间最小值的下标
{
if(a > b)swap(a,b);
int k = mm[b-a+];
return rmq[dp[a][k]] <= rmq[dp[b-(<<k)+][k]]?dp[a][k]:dp[b-(<<k)+][k];
}
};
//边的结构体定义
struct Edge
{
int to,next;
};
Edge edge[MAXN*];
int tot,head[MAXN]; int F[MAXN*];//欧拉序列,就是dfs遍历的顺序,长度为2*n-1,下标从1开始
int P[MAXN];//P[i]表示点i在F中第一次出现的位置
int cnt; ST st;
void init()
{
tot = ;
memset(head,-,sizeof(head));
}
void addedge(int u,int v)//加边,无向边需要加两次
{
edge[tot].to = v;
edge[tot].next = head[u];
head[u] = tot++;
}
void dfs(int u,int pre,int dep)
{
F[++cnt] = u;
rmq[cnt] = dep;
P[u] = cnt;
for(int i = head[u];i != -;i = edge[i].next)
{
int v = edge[i].to;
if(v == pre)continue;
dfs(v,u,dep+);
F[++cnt] = u;
rmq[cnt] = dep;
}
}
void LCA_init(int root,int node_num)//查询LCA前的初始化
{
cnt = ;
dfs(root,root,);
st.init(*node_num-);
}
int query_lca(int u,int v)//查询u,v的lca编号
{
return F[st.query(P[u],P[v])];
}
bool flag[MAXN];
int main()
{
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int T;
int N;
int u,v;
scanf("%d",&T);
while(T--)
{
scanf("%d",&N);
init();
memset(flag,false,sizeof(flag));
for(int i = ; i < N;i++)
{
scanf("%d%d",&u,&v);
addedge(u,v);
addedge(v,u);
flag[v] = true;
}
int root;
for(int i = ; i <= N;i++)
if(!flag[i])
{
root = i;
break;
}
LCA_init(root,N);
scanf("%d%d",&u,&v);
printf("%d\n",query_lca(u,v));
}
return ;
}

POJ 1330 Nearest Common Ancestors (LCA,dfs+ST在线算法)的更多相关文章

  1. POJ - 1330 Nearest Common Ancestors(dfs+ST在线算法|LCA倍增法)

    1.输入树中的节点数N,输入树中的N-1条边.最后输入2个点,输出它们的最近公共祖先. 2.裸的最近公共祖先. 3. dfs+ST在线算法: /* LCA(POJ 1330) 在线算法 DFS+ST ...

  2. POJ 1330 Nearest Common Ancestors (dfs+ST在线算法)

    详细讲解见:https://blog.csdn.net/liangzhaoyang1/article/details/52549822 zz:https://www.cnblogs.com/kuang ...

  3. POJ.1330 Nearest Common Ancestors (LCA 倍增)

    POJ.1330 Nearest Common Ancestors (LCA 倍增) 题意分析 给出一棵树,树上有n个点(n-1)条边,n-1个父子的边的关系a-b.接下来给出xy,求出xy的lca节 ...

  4. poj 1330 Nearest Common Ancestors lca 在线rmq

    Nearest Common Ancestors Description A rooted tree is a well-known data structure in computer scienc ...

  5. POJ 1330 Nearest Common Ancestors LCA题解

    Nearest Common Ancestors Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 19728   Accept ...

  6. poj 1330 Nearest Common Ancestors LCA

    题目链接:http://poj.org/problem?id=1330 A rooted tree is a well-known data structure in computer science ...

  7. POJ 1330 Nearest Common Ancestors (LCA,倍增算法,在线算法)

    /* *********************************************** Author :kuangbin Created Time :2013-9-5 9:45:17 F ...

  8. POJ 1330 Nearest Common Ancestors(LCA模板)

    给定一棵树求任意两个节点的公共祖先 tarjan离线求LCA思想是,先把所有的查询保存起来,然后dfs一遍树的时候在判断.如果当前节点是要求的两个节点当中的一个,那么再判断另外一个是否已经访问过,如果 ...

  9. POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA)

    POJ 1330 Nearest Common Ancestors / UVALive 2525 Nearest Common Ancestors (最近公共祖先LCA) Description A ...

  10. POJ 1330 Nearest Common Ancestors 倍增算法的LCA

    POJ 1330 Nearest Common Ancestors 题意:最近公共祖先的裸题 思路:LCA和ST我们已经很熟悉了,但是这里的f[i][j]却有相似却又不同的含义.f[i][j]表示i节 ...

随机推荐

  1. 美国部分科技公司创始及IPO信息

    作者:Ben.Z 时间:2018-04-19 做这份统计表格的目的是为了更好地了解当下美国的IT发展,搞清楚那些耳熟能详的名词的来源. 原文是用WPS统计的,本文仅展示截图. 创始人年龄分析: 1.上 ...

  2. 【剑指Offer面试题】 九度OJ1389:变态跳楼梯

    转自:http://www.myexception.cn/program/1973966.html 时间限制:1 秒内存限制:32 兆特殊判题:否提交:2331解决:1332 题目描述: 一只青蛙一次 ...

  3. GitHub在线创建文件夹

    点击New files按钮,然后输入含有slash字符(“/”)的文件名即可.也就是建立一个含有路径(目录)的文件,即会自动产生新文件夹. 点击Upload files按钮,然后直接把本地的文件夹(内 ...

  4. 一步一步学习IdentityServer3 (11) OAuth2

    OAuth中定义了四个Role 资源所有者:这里可以理解为一个用户 资源服务器:如同前面章节中的 Web站点或者WebApi 服务资源站点 客户端:这里是Client,如同Identityserver ...

  5. HBase(四)HBase集群Shell操作

    一.进入HBase命令行 在你安装的随意台服务器节点上,执行命令:hbase shell,会进入到你的 hbase shell 客 户端 [admin@node21 ~]$ hbase shell S ...

  6. python mysql连接函数

    def mysqlConnectionSql(sql,value): try: conn=MySQLdb.connect(host='127.0.0.1',user='webuser',passwd= ...

  7. HBase的基础知识

    1.HBase(NoSQL:不是关系型数据库)的逻辑数据模型 HBase – Hadoop Database,是一个高可靠性.高性能.面向列.可伸缩的分布式存储系统,利用HBase技术可在廉价PC S ...

  8. django Form 表单 总结与小实例

    开头寄语: 这几天一直在看Django的form表单验证,然后想对于这几天要有个总结. 首先,先来看一下找到的一个form表单验证的流程: 验证过程 流程详解1. 函数full_clean()依次调用 ...

  9. 13:在O(1)时间内删除单向链表中的一个节点

    思路:如果从首部开始依次查找,那么时间是O(n). 既然我们知道要删除的结点i,那么我们就知道它指向的下一个结点j,那么我们可以将j的内容复制到i,然后将i的指针指向j的下一个结点,这样虽然看起来我们 ...

  10. IOS 本地推送

    // 1.打开本地推送并设置属性 NSString *str = @"本地推送的信息"; UIApplication *app = [UIApplication sharedApp ...