混沌数学之Baker模型
相关DEMO参见:混沌数学之离散点集图形DEMO
相关代码:
// http://wenku.baidu.com/view/ac9b57ea172ded630b1cb65b.html
class BakerEquation : public DiscreteEquation
{
public:
BakerEquation()
{
m_StartX = 0.25f;
m_StartY = 0.25f;
} void IterateValue(float x, float y, float& outX, float& outY) const
{
if (x < 0.5f)
{
outX = *x/*+0.00001f*/;
outY = y*0.5f;
}
else
{
outX = *x - ;
outY = (y+1.0f)*0.5f;
}
}
}; //class Baker2Equation : public DiscreteEquation
//{
//public:
// Baker2Equation()
// {
// m_StartX = 0.25f;
// m_StartY = 0.25f;
// }
//
// void IterateValue(float x, float y, float& outX, float& outY) const
// {
// outX = fmodf(2*x, 1.0f);
// outY = (fabsf(2*x) + y)*0.5f;
// }
//};
相关截图:



混沌数学之Baker模型的更多相关文章
- 混沌数学之logistic模型
logistic回归又称logistic回归分析,主要在流行病学中应用较多,比较常用的情形是探索某疾病的危险因素,根据危险因素预测某疾病发生的概率. 相关DEMO参见:混沌数学之离散点集图形DEMO ...
- 混沌数学之ASin模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: class ASinEquation : public DiscreteEquation { public: ASinEquation() { m ...
- 混沌数学之Kent模型
相关软件:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/7c6f4a000740be1e650e9a75.html // 肯特映射 clas ...
- 混沌数学之Feigenbaum模型
1975年,物理学家米切尔·费根鲍姆(Mitchell Feigenbaum)发现,一个可用实验加以测 量的特殊数与每个周期倍化级联相联系.这个数大约是4.669,它与π并列成为似乎在数学 ...
- 混沌数学之Standard模型
相关软件混沌数学之离散点集图形DEMO 相关代码: class StandardEquation : public DiscreteEquation { public: StandardEquatio ...
- 混沌数学之Arnold模型
相关软件混沌数学之离散点集图形DEMO 相关代码: class ArnoldEquation : public DiscreteEquation { public: ArnoldEquation() ...
- 混沌数学之Henon模型
相关DEMO参见:混沌数学之离散点集图形DEMO 相关代码: // http://wenku.baidu.com/view/d51372a60029bd64783e2cc0.html?re=view ...
- 混沌数学之离散点集图形DEMO
最近看了很多与混沌相关的知识,并写了若干小软件.混沌现象是个有意思的东西,同时混沌也能够生成许多有意思的图形.混沌学的现代研究使人们渐渐明白,十分简单的数学方程完全可以模拟系统如瀑布一样剧烈的行为.输 ...
- 混沌数学之二维logistic模型
上一节讲了logistic混沌模型,这一节对其扩充一下讲二维 Logistic映射.它起着从一维到高维的衔接作用,对二维映射中混沌现象的研究有助于认识和预测更复杂的高维动力系统的性态.通过构造一次藕合 ...
随机推荐
- 部署 LAMP
部署 LAMP https://help.aliyun.com/document_detail/50774.html?spm=a2c4g.11186623.6.773.Em8xVc 文档提供方:上海驻 ...
- [ 转载 ] Okhttp的用法
Android中OkHttp的使用 LuckyXiang 简书作者 02018-01-18 19:04 打开App Android中OkHttp的使用 官方网站 | Javadoc 1 简介 OkHt ...
- laya IDE 初始化设置
切换到 编辑模式(显示UI的界面)--按F9--- 修改 资源发布目录为 bin/
- 【漏洞预警】方程式又一波大规模 0day 攻击泄漏,微软这次要血崩
一大早起床是不是觉得阳光明媚岁月静好?然而网络空间刚刚诞生了一波核弹级爆炸!Shadow Brokers再次泄露出一份震惊世界的机密文档,其中包含了多个精美的 Windows 远程漏洞利用工具,可以覆 ...
- [CSAcademy]Cycle Tree
[CSAcademy]Cycle Tree 题目大意: 定义环树是一张无向连通的简单图,它的生成方式如下: \(2\)个点\(1\)条边的图是环树: 对任意一个环树,加入\(k\)个点\(a_{1\s ...
- [HNOI2008]玩具装箱
OJ题号: BZOJ1010 思路: 斜率优化动态规划. 由题意得状态转移方程为$f_i=\displaystyle{\min_{j=0}^{i-1}}\{f_j+\left(i-j-1+\displ ...
- SQL SERVER 2008 多边形问题的解决
报错内容: 在执行用户定义例程或聚合 "geometry" 期间出现 .NET Framework 错误: System.ArgumentException: 24144: 由于该 ...
- lor框架代码分析
属性 lor: version router route request response fn app create_app Router Route Request Response 属性 lor ...
- hihocoder #1301 : 筑地市场 二分+数位dp
#1301 : 筑地市场 题目连接: http://hihocoder.com/problemset/problem/1301 Description 筑地市场是位于日本东京都中央区筑地的公营批发市场 ...
- 自动化运维之 ~cobbler~
一 .Cobbler简介 Cobbler是一个快速网络安装linux的服务,而且在经过调整也可以支持网络安装windows.该工具使用python开发,小巧轻便(才15k 行python代码),使用简 ...