【Hadoop】Combiner的本质是迷你的reducer,不能随意使用
问题提出:
众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出。 在上述过程中,我们看到至少两个性能瓶颈:(引用)
- 如果我们有10亿个数据,Mapper会生成10亿个键值对在网络间进行传输,但如果我们只是对数据求最大值,那么很明显的Mapper只需要输出它所知道的最大值即可。这样做不仅可以减轻网络压力,同样也可以大幅度提高程序效率。
- 使用专利中的国家一项来阐述数据倾斜这个定义。这样的数据远远不是一致性的或者说平衡分布的,由于大多数专利的国家都属于美国,这样不仅Mapper中的键值对、中间阶段(shuffle)的键值对等,大多数的键值对最终会聚集于一个单一的Reducer之上,压倒这个Reducer,从而大大降低程序的性能。
目标:
Mapreduce中的Combiner就是为了避免map任务和reduce任务之间的数据传输而设置的,Hadoop允许用户针对map task的输出指定一个合并函数。即为了减少传输到Reduce中的数据量。它主要是为了削减Mapper的输出从而减少网络带宽和Reducer之上的负载。
数据格式转换:
map: (K1, V1) → list(K2,V2)
combine: (K2, list(V2)) → list(K3, V3)
reduce: (K3, list(V3)) → list(K4, V4)
注意:combine的输入和reduce的完全一致,输出和map的完全一致
使用注意:
对于Combiner有几点需要说明的是:
1)有很多人认为这个combiner和map输出的数据合并是一个过程,其实不然,map输出的数据合并只会产生在有数据spill出的时候,即进行merge操作。
2)与mapper与reducer不同的是,combiner没有默认的实现,需要显式的设置在conf中才有作用。
3)并不是所有的job都适用combiner,只有操作满足结合律的才可设置combiner。combine操作类似于:opt(opt(1, 2, 3), opt(4, 5, 6))。如果opt为求和、求最大值的话,可以使用,但是如果是求中值的话,不适用。
4)一般来说,combiner和reducer它们俩进行同样的操作。
但是:特别值得注意的一点,一个combiner只是处理一个结点中的的输出,而不能享受像reduce一样的输入(经过了shuffle阶段的数据),这点非常关键。具体原因查看下面的数据流解释:
融合combiner的数据流

插入了Combiner的MapReduce数据流
Combiner:前面展示的流水线忽略了一个可以优化MapReduce作业所使用带宽的步骤,这个过程叫Combiner,它在Mapper之后Reducer之前运行。Combiner是可选的,如果这个过程适合于你的作业,Combiner实例会在每一个运行map任务的节点上运行。Combiner会接收特定节点上的Mapper实例的输出作为输入,接着Combiner的输出会被发送到Reducer那里,而不是发送Mapper的输出。Combiner是一个“迷你reduce”过程,它只处理单台机器生成的数据(特别重要,作者在做一个矩阵乘法的时候,没有领会到这点,把它当成一个完全的reduce的输入数据来处理,结果出错。)。
词频统计是一个可以展示Combiner的用处的基础例子,上面的词频统计程序为每一个它看到的词生成了一个(word,1)键值对。所以如果在同一个文档内“cat”出现了3次,(”cat”,1)键值对会被生成3次,这些键值对会被送到Reducer那里。通过使用Combiner,这些键值对可以被压缩为一个送往Reducer的键值对(”cat”,3)。现在每一个节点针对每一个词只会发送一个值到reducer,大大减少了shuffle过程所需要的带宽并加速了作业的执行。这里面最爽的就是我们不用写任何额外的代码就可以享用此功能!如果你的reduce是可交换及可组合的,那么它也就可以作为一个Combiner。你只要在driver中添加下面这行代码就可以在词频统计程序中启用Combiner。
参考资料:
http://blog.csdn.net/guoery/article/details/8529004
http://blog.csdn.net/guoery/article/details/8529004
【Hadoop】Combiner的本质是迷你的reducer,不能随意使用的更多相关文章
- (转)Hadoop Combiner
转自:http://blog.csdn.net/jokes000/article/details/7072963 众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value& ...
- hadoop运行原理之shuffle
hadoop的核心思想是MapReduce,但shuffle又是MapReduce的核心.shuffle的主要工作是从Map结束到Reduce开始之间的过程.首先看下这张图,就能了解shuffle所处 ...
- BAT大数据面试题
1.kafka的message包括哪些信息 一个Kafka的Message由一个固定长度的header和一个变长的消息体body组成 header部分由一个字节的magic(文件格式)和四个字节的CR ...
- Hadoop学习笔记—8.Combiner与自定义Combiner
一.Combiner的出现背景 1.1 回顾Map阶段五大步骤 在第四篇博文<初识MapReduce>中,我们认识了MapReduce的八大步凑,其中在Map阶段总共五个步骤,如下图所示: ...
- Hadoop(十六)之使用Combiner优化MapReduce
前言 前面的一篇给大家写了一些MapReduce的一些程序,像去重.词频统计.统计分数.共现次数等.这一篇给大家介绍的是关于Combiner优化操作. 一.Combiner概述 1.1.为什么需要Co ...
- Hadoop的Combiner
在很多MapReduce应用的场景中,假设能在向reducer分发mapper结果之前做一下"本地化Reduce".一wordcount为样例,假设作业处理中的文件单词中" ...
- Hadoop 使用Combiner提高Map/Reduce程序效率
众所周知,Hadoop框架使用Mapper将数据处理成一个<key,value>键值对,再网络节点间对其进行整理(shuffle),然后使用Reducer处理数据并进行最终输出. 在上述过 ...
- Hadoop学习之路(十八)MapReduce框架Combiner分区
对combiner的理解 combiner其实属于优化方案,由于带宽限制,应该尽量map和reduce之间的数据传输数量.它在Map端把同一个key的键值对合并在一起并计算,计算规则与reduce一致 ...
- hadoop的一些名词解释
在网上收集了一些mapreduce中常用的一些名词的解释,分享一下: Shuffle(洗牌):当第一个map任务完成后,节点可能还要继续执行更多的map 任务,但这时候也开始把map任务的中间输出交换 ...
随机推荐
- [ 原创 ] git使用技巧
Git的使用--如何将本地项目上传到Github Git分支图介绍 https://www.cnblogs.com/cheneasternsun/p/5952830.html https://www. ...
- Android ContentObserver详解
前言: 工作中,需要开启一个线程大量的查询某个数据库值发送了变化,导致的开销很大,后来在老大的指点下,利用了ContentObserver完美的解决了该问题,感到很兴奋,做完之后自己也对Content ...
- hdu 4557 暴力
题意: 作为2013年699万应届毕业生中的一员,由于宏观经济的不景气,小明在毕业当天就华丽丽地失业了! 经历了千难万苦的求职过程,小明特别能理解毕业生的就业之难,所以,他现在准备创建一家专门针对IT ...
- 简单的php自定义错误日志
平时经常看php的错误日志,很少有机会去自己动手写日志,看了王健的<最佳日志实践>觉得写一个清晰明了,结构分明的日志还是非常有必要的. 在写日志前,我们问问自己:为什么我们有时要记录自定义 ...
- Python环境右键定制
有时候,我们需要将py打包成exe.需要将ui转换成py.需要将py转换成pyc等等,命令行操作起来有点繁琐.所以做了这个教程: 1. py打包成exe 先安装cx_freeze,参照教程:http: ...
- Codeforces Round #352 (Div. 1) B. Robin Hood 二分
B. Robin Hood 题目连接: http://www.codeforces.com/contest/671/problem/B Description We all know the impr ...
- Codeforces Round #298 (Div. 2) E. Berland Local Positioning System 构造
E. Berland Local Positioning System Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://codeforces.c ...
- js 闭包范式概述
在前几篇文章中我介绍过js的闭包,这一篇主要简单的介绍一下js中闭包的范式. 那么何谓闭包的范式呢? 首先回想一下闭包的概念,闭包是外部函数与函数内部之间通信的桥梁,通过对函数的返回,使得外部的函数能 ...
- Bus Blaster
http://dangerousprototypes.com/docs/Bus_Blaster Bus Blaster v2 is an experimental, high-speed JTAG d ...
- maven里如何根据不同的environment打包
一个项目里总会有很多配置文件.而且一般都会有多套环境.开发的.测试的.正式的.而在这些不同的环境这些配置的值都会不一样.比如mail的配置.服务的url配置这些都是很常见的.所以在打包的时候就要根据e ...