poj 1284 Primitive Roots (原根)
| Time Limit: 1000MS | Memory Limit: 10000K | |
Description
Write a program which given any odd prime 3 <= p < 65536 outputs the number of primitive roots modulo p.
Input
Output
Sample Input
23
31
79
Sample Output
10
8
24
Source
对于给出的素数p,
首先要明确一点:p的元根必然是存在的(这一点已由Euler证明,此处不再赘述),因此,不妨设其中的一个元根是a0(1<=a0<=p-1)
按照题目的定义,a0^i(1<=i<=p-1) mod p的值是各不相同的,再由p是素数,联系Fermat小定理可知:q^(p-1) mod p=1;(1<=q<=p-1)(这个在下面有用)
下面证明,如果b是p的一个异于a的元根,不妨令b与a0^t关于p同余,那么必然有gcd(t,p-1)=1,亦即t与p-1互质;反之亦然;
证明:
若d=gcd(t,p-1)>1,令t=k1*d,p-1=k2*d,则由Fermat可知
(a0^(k1*d))^k2 mod p=(a0^(k2*d))^(k1) mod p=(a0^(p-1))^(k1) mod p=1
再由b=a0^t (mod p),结合上面的式子可知:
(a0^(k1*d))^k2 mod n=b^k2 mod p=1;
然而b^0 mod p=1,所以b^0=b^k2 (mod p),所以b^i mod p的循环节=k2<p-1,因此这样的b不是元根; 再证,若d=gcd(t,p-1)=1,即t与p-1互质,那么b必然是元根;
否则假设存在1<=j<i<=p-1,使得b^j=b^i (mod p),即a0^(j*t)=a0^(i*t) (mod p),由a0是元根,即a0的循环节长度是(p-1)可知,(p-1) | (i*t-j*t)->(p-1) | t*(i-j),由于p与
t互质,所以(p-1) | (i-j),但是根据假设,0<i-j<p-1,得出矛盾,结论得证; 由上面的两个证明可知b=a0^t (mod p),是一个元根的充要条件是t与p-1互质,所有的这些t的总个数就是Phi(p-1);
#include<cstdio>
#define N 65537
using namespace std;
int v[N],prime[N],phi[N],cnt,n;
void euler()
{
phi[]=;
for(int i=;i<=N;i++)
{
if(!v[i])
{
v[i]=true;
prime[++cnt]=i;
phi[i]=i-;
}
for(int j=;j<=cnt;j++)
{
if(i*prime[j]>N) break;
v[i*prime[j]]=true;
if(i%prime[j]==)
{
phi[i*prime[j]]=phi[i]*prime[j];
break;
}
phi[i*prime[j]]=phi[i]*(prime[j]-);
}
}
}
int main()
{
euler();
while(scanf("%d",&n)!=EOF) printf("%d\n",phi[n-]);
}
poj 1284 Primitive Roots (原根)的更多相关文章
- POJ 1284 Primitive Roots 原根
题目来源:POJ 1284 Primitive Roots 题意:求奇素数的原根数 思路:一个数n是奇素数才有原根 原根数是n-1的欧拉函数 #include <cstdio> const ...
- POJ 1284 Primitive Roots (求原根个数)
Primitive Roots 题目链接:id=1284">http://poj.org/problem?id=1284 利用定理:素数 P 的原根的个数为euler(p - 1) t ...
- POJ 1284 Primitive Roots 数论原根。
Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 2479 Accepted: 1385 D ...
- poj 1284 Primitive Roots(原根+欧拉函数)
http://poj.org/problem?id=1284 fr=aladdin">原根 题意:对于奇素数p,假设存在一个x(1<x<p),(x^i)%p两两不同(0&l ...
- poj 1284 Primitive Roots(未完)
Primitive Roots Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 3155 Accepted: 1817 D ...
- (Relax 数论1.8)POJ 1284 Primitive Roots(欧拉函数的应用: 以n为模的本原根的个数phi(n-1))
/* * POJ_2407.cpp * * Created on: 2013年11月19日 * Author: Administrator */ #include <iostream> # ...
- POJ 1284 Primitive Roots (欧拉函数+原根)
<题目链接> 题目大意: 满足{ ( $x^{i}$ mod p) | 1 <=$i$ <= p-1 } == { 1, …, p-1 }的x称为模p的原根.给出p,求原根个数 ...
- poj 1284 Primitive Roots
从来没有接触过完全剩余系,不会证明,知道看了别人的题解才知道要用欧拉函数: 下面是证明过程: p是奇素数,如果{xi%p | 1 <= i <= p - 1} = {1,2,...,p-1 ...
- 【POJ】1284 Primitive Roots
http://poj.org/problem?id=1284 题意:求一个素数p的原根个数.(p<=65535) #include <cstdio> #include <cst ...
随机推荐
- Navicat Premium 连接Oracle 数据库
昨天开始工作的时候听同事说:Navicat可以连各种数据库,包括Oracle,头一次听说!!!很是尴尬.现在记录一下怎么用Navicat连接Oracle.最重要的是,Navicat只支持32的Orac ...
- Gradle入门(2):构建简介
基本概念 在Gradle中,有两个基本概念:项目和任务.请看以下详解: 项目是指我们的构建产物(比如Jar包)或实施产物(将应用程序部署到生产环境).一个项目包含一个或多个任务. 任务是指不可分的最小 ...
- C++ socket网络爬虫(1)
C++写的socket网络爬虫,代码会在最后一次讲解中提供给大家,同时我也会在写的同时不断的对代码进行完善与修改 我首先向大家讲解如何将网页中的内容,文本,图片等下载到电脑中. 我会教大家如何将百度首 ...
- HDU 2107 Founding of HDU
http://acm.hdu.edu.cn/showproblem.php?pid=2107 Problem Description 经过慎重的考虑,XHD,8600, LL,Linle以及RPG等A ...
- [微软官方]SQLSERVER的兼容级别
ALTER DATABASE (Transact-SQL) 兼容级别 https://docs.microsoft.com/zh-cn/sql/t-sql/statements/alter-datab ...
- Convolutional Neural Networks卷积神经网络(二)
转自http://blog.csdn.net/zouxy09/article/details/8781543 CNNs是第一个真正成功训练多层网络结构的学习算法.它利用空间关系减少需要学习的参数数目以 ...
- Linux_MySql_yum_安装
1.卸载原始mysql-lib sudo rpm -e --nodeps mysql-libs-xx 2.yum安装mysql-server sudo yum -y install mysql -se ...
- VM ware 中win2008 找不到网卡驱动的解决办法之一
在.vmx文件中用如下语句指定: ethernet0.virtualDev = "e1000" 其值为e1000指定网卡类型为Intel(R) PRO/1000(6.5默认为此项) ...
- java并发编程中CountDownLatch和CyclicBarrier的使用
在多线程程序设计中,经常会遇到一个线程等待一个或多个线程的场景,遇到这样的场景应该如何解决? 如果是一个线程等待一个线程,则可以通过await()和notify()来实现: 如果是一个线程等待多个线程 ...
- Sort HDU - 5884(优先队列+二分)
Sort Time Limit: 3000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Submis ...