题面:UVA1386 Cellular Automaton

矩阵乘法+快速幂解法:

这是一个比较裸的有点复杂需要优化的矩乘快速幂,所以推荐大家先做一下下列洛谷题目练练手:

(会了,差不多就是多倍经验题了)

注:如果你还不会矩阵乘法,可以移步了解一下P3390的题解

P1939 【模板】矩阵加速(数列)

P3390 【模板】矩阵快速幂

P1962 斐波那契数列

P4910 帕秋莉的手环

P4838 P哥破解密码

然后讲一下本题,读题我们发现这个环上所进行的 k 次操作都是一模一样的,还是相邻的数的和,于是想到用矩阵快速幂来写。

解题思路:

我们可以根据 d 的值来建出基础矩阵,举个例子(样例):

					1 1 0 0 1
1 1 1 0 0
0 1 1 1 0
0 0 1 1 1
1 0 0 1 1

这是样例每一次操作所对应的乘法矩阵。我们要求出 k 次操作后的环上的元素等同于乘以 k 次这个矩阵,而这个过程可以直接用快速幂优化成log复杂度。

于是我们便可以光明正大的提交,然后光荣 TLE 了

为什么呢?我们看到数据范围:$ n \leq 500 $ !众所周知:矩阵乘法中矩阵上每一个元素都会被用行乘列的方式更新,所以复杂度为 \(n^3\),在乘上快速幂的一个log n ,不TLE才怪!

优化方案:

于是我们尝试优化一下(把那个 $ n^3 $ 降到 $ n^2 $ ):我们再看到上面样例的矩阵,可以发现它的下一行等于上一行所有的 1 向右移一位。所以我们进行矩阵乘法时可以不更新矩阵的每一个位置,而是只更新它的第一行(将它压缩一下)其它几行可以通过第一行推出来。

例如:

					0 2 1 1 2

我们可以通过这一行推出整个矩阵(向右移一位):

					0 2 1 1 2
2 0 2 1 1
1 2 0 2 1
1 1 2 0 2
2 1 1 2 0

于是乎,我们写一个新的”矩阵乘法“代码如下:

void cheng(ll a[],ll b[]){
for(int i=1;i<=n;i++)//预处理 1
res[i]=0,s[1][i]=b[i];
for(int i=2;i<=n;i++){
s[i][1]=s[i-1][n];
for(int j=2;j<=n;j++)
s[i][j]=s[i-1][j-1];
}// 解压一维矩阵,复杂度不会变回 n^3!
for(int i=1;i<=n;i++)
for(int k=1;k<=n;k++)
res[i]+=(a[k]*s[i][k])%m,res[i]%=m;
for(int i=1;i<=n;i++)a[i]=res[i];
}// 本题专用“矩阵乘法”
//请不要直接给a数组赋值,不然后果自负!

然后在用快速幂优化一下:

while(k){
if(k&1)cheng(ans,base);
cheng(base,base);
k>>=1;
}

完整代码:

#include<iostream>
#include<cstdio>
#include<iomanip>
#include<algorithm> #define ll long long
#define db double
#define inf 0x7fffffff using namespace std; const int l=501;
int n,m,d,k;
ll s[l][l];
ll ans[l],base[l],res[l];
// ans=(answer),base(基础矩阵),res=(result)
// s数组是用来解压矩阵的(将一维矩阵换成二维) inline ll qr(){
char ch;
while((ch=getchar())<'0'||ch>'9');
ll res=ch^48;
while((ch=getchar())>='0'&&ch<='9')
res=(res<<1)+(res<<3)+(ch^48);
return res;
} void cheng(ll a[],ll b[]){
for(int i=1;i<=n;i++)//预处理 1
res[i]=0,s[1][i]=b[i];
for(int i=2;i<=n;i++){
s[i][1]=s[i-1][n];
for(int j=2;j<=n;j++)
s[i][j]=s[i-1][j-1];
}// 解压一维矩阵,复杂度不会变回 n^3!
for(int i=1;i<=n;i++)
for(int k=1;k<=n;k++)
res[i]+=(a[k]*s[i][k])%m,res[i]%=m;
for(int i=1;i<=n;i++)a[i]=res[i];
}// 本题专用“矩阵乘法”
//请不要直接给a数组赋值,不然后果自负! int main(){
while(scanf("%d%d%d%d",&n,&m,&d,&k)!=EOF){
for(int i=1;i<=n;i++)//预处理 2
ans[i]=qr(),base[i]=0;
for(int i=0;i<=d;i++)//单位矩阵
base[1+i]=base[(n-i)%n+1]=1;
while(k){
if(k&1)cheng(ans,base);
cheng(base,base);
k>>=1;
}// 只有四行的快速幂
for(int i=1;i<n;++i){
printf("%lld ",ans[i]);
}printf("%lld\n",ans[n]);
}
return 0;
} //预处理 1:将res数组归零,将b数组赋值给s数组第一维以便压缩 //预处理 2:给ans数组赋初值,将单位矩阵清零

注:解压矩阵会消耗很多时间,也可以不解压,但乘起来会有些麻烦(蒟蒻手残,就不压行了吧)。

UVA1386 【Cellular Automaton】题解的更多相关文章

  1. 【POJ】3150 Cellular Automaton(矩阵乘法+特殊的技巧)

    http://poj.org/problem?id=3150 这题裸的矩阵很容易看出,假设d=1,n=5那么矩阵是这样的 1 1 0 0 1 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 ...

  2. UVA 1386 - Cellular Automaton(循环矩阵)

    UVA 1386 - Cellular Automaton option=com_onlinejudge&Itemid=8&page=show_problem&category ...

  3. [POJ 3150] Cellular Automaton (矩阵高速幂 + 矩阵乘法优化)

    Cellular Automaton Time Limit: 12000MS   Memory Limit: 65536K Total Submissions: 3048   Accepted: 12 ...

  4. POJ 3150 Cellular Automaton(矩阵快速幂)

    Cellular Automaton Time Limit: 12000MS Memory Limit: 65536K Total Submissions: 3504 Accepted: 1421 C ...

  5. POJ - 3150 :Cellular Automaton(特殊的矩阵,降维优化)

    A cellular automaton is a collection of cells on a grid of specified shape that evolves through a nu ...

  6. POJ 3150 Cellular Automaton(矩阵高速幂)

    题目大意:给定n(1<=n<=500)个数字和一个数字m,这n个数字组成一个环(a0,a1.....an-1).假设对ai进行一次d-step操作,那么ai的值变为与ai的距离小于d的全部 ...

  7. POJ 3150 Cellular Automaton --矩阵快速幂及优化

    题意:给一个环,环上有n块,每块有个值,每一次操作是对每个点,他的值变为原来与他距离不超过d的位置的和,问k(10^7)次操作后每块的值. 解法:一看就要化为矩阵来做,矩阵很好建立,大白书P157页有 ...

  8. LA 3704 Cellular Automaton

    题意概述: 等价地,本题可以转化为下面的问题: 考虑$n \times n$的$0-1$矩阵$A$,在第$i$行上第$[-d+i, d+i]$(模$n$意义下)列对应的元素为$1$,其余为$0$.求$ ...

  9. POJ 3150 Cellular Automaton(矩阵乘法+二分)

    题目链接 题意 : 给出n个数形成环形,一次转化就是将每一个数前后的d个数字的和对m取余,然后作为这个数,问进行k次转化后,数组变成什么. 思路 :下述来自here 首先来看一下Sample里的第一组 ...

随机推荐

  1. Ubuntu安装使用中的一些注意事项

    在win7上安装VMware workstations10.0 ,在VMware workstations10.0上安装Ubuntu14.04 64位时,关于网络的连接注意: win7 网络连接里上的 ...

  2. Java Queue 专题

    关于java中的Queue,经常用到,做个总结 Queue是一种很常见的数据结构类型,在java里面Queue是一个接口,它只是定义了一个基本的Queue应该有哪些功能规约. (Java中的集合包括三 ...

  3. 第214天:Angular 基础概念

    一.Angular 简介 1. 什么是 AngularJS - 一款非常优秀的前端高级 JS 框架 - 最早由 Misko Hevery 等人创建 - 2009 年被 Google 公式收购,用于其多 ...

  4. js 添加事件兼容性

    var tools = { //添加事件 addHandle: function (e, type, handle) { if (e.addEventListener) { e.addEventLis ...

  5. TypeError: to_categorical() got an unexpected keyword argument 'nb_classes'

    在学习莫烦教程中keras教程时,报错:TypeError: to_categorical() got an unexpected keyword argument 'nb_classes',代码如下 ...

  6. Python 自动补全(vim)

    一.vim python自动补全插件:pydiction 可以实现下面python代码的自动补全: 1.简单python关键词补全 2.python 函数补全带括号 3.python 模块补全 4.p ...

  7. 关于AC自动机和DP的联系

    首先是描述个大概.不说一些特殊的DP 或者借用矩阵来状态转移 (这些本质都是一样的). 只讲AC自动机和DP的关系(个人理解). AC自动机 又可以叫做状态机. 我一开始的认为.AC 自动机提供了一些 ...

  8. 简单版AC自动机

    简单版\(AC\)自动机 学之前听别人说起一直以为很难,今天学了简单版的\(AC\)自动机,感觉海星,只要理解了\(KMP\)一切都好说. 前置知识:\(KMP\)(有链接) 前置知识:\(Trie\ ...

  9. 三、Linux学习之命令基本格式篇

    一.命令格式 命令 [选项] [参数] 注意: 1.和别命令使用不遵循此格式 2.当有多个选项时,可以写在一起 3.简化选项与完整选项(-a 等价于--all) 4.中括号为可选,意思是可以有可以没有 ...

  10. php配置修改后,平滑启动php-fpm

    修改了php配置需要平滑启动php-fpm ps -aux | grep php-fpm 找到phpfpm 的master process的进程id kill -SIGUSR2 31158   实现平 ...