【AGC010F】Tree Game
Description
有一棵\(n\)个节点的树(\(n \le 3000\)),第\(i\)条边连接\(a_i,b_i\),每个节点\(i\)上有\(A_i\)个石子,高桥君和青木君将在树上玩游戏。
首先,高桥君会选一个节点并在上面放一个棋子,然后从高桥君开始,他们轮流执行以下操作:
(1)从当前棋子占据的点上移除一个石子;
(2)将棋子移动到相邻节点
如果轮到一个人执行操作时棋子占据的点上没有石子,那么他就输了 。
请你找出所有的点\(v\),使得如果高桥君在游戏开始时把棋子放到\(v\)上,他可以赢。(按编号从小到大输出)
Solution
首先两个人的行动是互相约束的。
假设当前在节点\(u\),先手能耗死后手(即先手必胜)当且仅当对于其所有相邻点,至少存在一个点\(v\),满足:
(1)\(a_u>a_v\)
(2)\(v\)先手必败。
首先(1)是这题对局的一种博弈过程,设想有且只有两个点\(u\)和\(v\),若初始时棋子在\(u\),且\(a_u>a_v\),那么反复走,后手必死。
因此只要先手走向了如是的\(v\),后手必定不会在这条边上反复横跳,之后也不会,因为一旦后手走回来,先手继续走回\(v\),可以把后手耗到死。
那么后手必定也只能在\(v\)中寻找机会。只要\(v\)是先手必败态,那么\(u\)即为先手必胜态,因为先手可以主动走到\(v\)引出必败态。
定义\(u\)是先手必败态当且仅当不存在上述\(v\)。
首先,如果先手走向的点\(v\)满足\(a_u\le a_v\),后手可以走回\(u\),因为反复横跳后先手必死。因此这些点不可走。
走向的点\(v\)满足\(a_u>a_v\)时,若\(v\)为先手必胜态,那么\(u\)肯定不能走这一步;如果不存在\(v\)是先手必败态,那么先手就无路可走了。
综上,因为必须走一步,所以\(u\)是先手必败态,当且仅当不存在\(v\)满足\(a_u>a_v\)且\(v\)先手必败。
对于每一个点,以其为根深搜,设\(f_u\)表示\(u\)是必胜还是必败,自底向上DP一遍。
为什么可以自底向上单向考虑?我们是要DP判定每个点\(u\)是不是必胜态,即要找到是否存在相邻点\(v\)满足\(a_u>a_v\),并深搜计算它们的必胜必败态。而对于不满足条件的\(v\),我们甚至不需要递归进去计算,因为先手不会选择走这边。所以,会选择\(u\)的父亲作为\(v\)吗?不会。每递归到\(u\)时,也就意味着,是上一步的先手想逼我(当前先手)反复横跳才走这一步过来,即满足\(a_{fa}>a_u\),所以当前先手肯定不能走父亲回去和他反复横跳。因此可以说,DP过程中,是一路向下,走后继递归计算的。
时间复杂度\(\mathcal O(n^2)\)。
我真TM可以退役了。
Code
#include <cstdio>
using namespace std;
const int N=3005;
int n,a[N],f[N];
int h[N],tot;
struct Edge{int v,next;}e[N*2];
inline void addEdge(int u,int v){
e[++tot]=(Edge){v,h[u]}; h[u]=tot;
e[++tot]=(Edge){u,h[v]}; h[v]=tot;
}
void readData(){
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",a+i);
int u,v;
for(int i=1;i<n;i++){
scanf("%d%d",&u,&v);
addEdge(u,v);
}
}
void dfs(int u,int fa){
f[u]=0;
for(int i=h[u],v;i;i=e[i].next)
if((v=e[i].v)!=fa&&a[u]>a[v]){
dfs(v,u);
if(f[v]==0){
f[u]=1;
return;
}
}
}
void solve(){
for(int u=1;u<=n;u++){
dfs(u,0);
if(f[u])
printf("%d ",u);
}
}
int main(){
readData();
solve();
return 0;
}
【AGC010F】Tree Game的更多相关文章
- 【AGC010F】Tree Game 博弈论+暴力
Description 有一棵nn个节点的树,第ii条边连接ai,biai,bi,每个节点ii上有AiAi个石子,高桥君和青木君将在树上玩游戏 首先,高桥君会选一个节点并在上面放一个棋子,然后 ...
- 【POJ3237】Tree 树链剖分+线段树
[POJ3237]Tree Description You are given a tree with N nodes. The tree's nodes are numbered 1 through ...
- 【BZOJ】【2631】Tree
LCT 又一道名字叫做Tree的题目…… 看到删边加边什么的……又是动态树问题……果断再次搬出LCT. 这题比起上道[3282]tree的难点在于需要像线段树维护区间那样,进行树上路径的权值修改&am ...
- 【Luogu1501】Tree(Link-Cut Tree)
[Luogu1501]Tree(Link-Cut Tree) 题面 洛谷 题解 \(LCT\)版子题 看到了顺手敲一下而已 注意一下,别乘爆了 #include<iostream> #in ...
- 【BZOJ3282】Tree (Link-Cut Tree)
[BZOJ3282]Tree (Link-Cut Tree) 题面 BZOJ权限题呀,良心luogu上有 题解 Link-Cut Tree班子提 最近因为NOIP考炸了 学科也炸了 时间显然没有 以后 ...
- 【AtCoder3611】Tree MST(点分治,最小生成树)
[AtCoder3611]Tree MST(点分治,最小生成树) 题面 AtCoder 洛谷 给定一棵\(n\)个节点的树,现有有一张完全图,两点\(x,y\)之间的边长为\(w[x]+w[y]+di ...
- 【HDU5909】Tree Cutting(FWT)
[HDU5909]Tree Cutting(FWT) 题面 vjudge 题目大意: 给你一棵\(n\)个节点的树,每个节点都有一个小于\(m\)的权值 定义一棵子树的权值为所有节点的异或和,问权值为 ...
- 【BZOJ2654】Tree(凸优化,最小生成树)
[BZOJ2654]Tree(凸优化,最小生成树) 题面 BZOJ 洛谷 题解 这道题目是之前\(Apio\)的时候写的,忽然发现自己忘记发博客了... 这个万一就是一个凸优化, 给所有白边二分一个额 ...
- 【POJ1741】Tree(点分治)
[POJ1741]Tree(点分治) 题面 Vjudge 题目大意: 求树中距离小于\(K\)的点对的数量 题解 完全不觉得点分治了.. 简直\(GG\),更别说动态点分治了... 于是来复习一下. ...
随机推荐
- Shader开发之烘焙Lightmap自发光
自己参考Build-in写了一套shader, 写完发现自发光部分在烘焙时不生效, 查阅资料发现需要在Material上设置为对应标记, 这部分功能可以像Standard Shader一样写在Shad ...
- 互联网校招面试必备——Java多线程
本文首发于我的个人博客:尾尾部落 本文是我刷了几十篇一线互联网校招java后端开发岗位的面经后总结的多线程相关题目,虽然有点小长,但是面试前看一看,相信能帮你轻松啃下多线程这块大骨头. 什么是进程,什 ...
- python破解网吧收费系统,远控网吧电脑设备!
我今天呢 , 我就没事跟着朋友喝酒喝酒啊.喝了很多啊.晚上到旁边的酒店开了一个房间,到了酒店才十点! 感觉没啥事情干的,那就去网吧走走看把,看到是一个嘟嘟牛的,和上次是一样的.还是照常用MS170 ...
- mysql innodb 从 ibd 文件恢复表数据
最近内部的 mysql 数据库发生了一件奇怪的事,其中有一个表 users625 突然出现问题, 所有对它的操作都报错误 数据表不存在. mysql> select count(*) from ...
- Linux 文件系统 -- 简述几种文件类型
Linux 中一切皆为文件,文件类型也有多种,使用 ls -l 命令可以查看文件的属性,所显示结果的第一列的第一个字符用来表明该文件的文件类型,如下: 1.普通文件 使用 ls -l 命令后,第一列第 ...
- nodejs 几篇有用的文章
深入浅出Node.js(三):深入Node.js的模块机制 http://www.infoq.com/cn/articles/nodejs-module-mechanism Node.js简单介绍并实 ...
- jsweb常用代码
<script> $(function (){ $.ajax({ url: 'https://test.com:8080/api/v1/users?query_not_auth=100&a ...
- Daily Scrum3 11.5
昨天的任务已经完成,但是大家分析后发现进度稍有些慢.今天各自都在调整进度,不再拖延别人的工作. 今日任务: 杨伊:做问卷调查,准备用户体验篇内容. 徐钧鸿:把Xueba中Utility 向闸瓦移植 张 ...
- Scrum Meeting 10.27
1.会议内容: 姓名 今日任务 明日任务 预估时间(h) 徐越 配置SQLserver 学习本地和服务器之间的通信 4 卞忠昊 找上届代码的bug 学习安卓布局(layout)的有关知识,研究上届学长 ...
- Daily Scrumming* 2015.10.29(Day 10)
一.总体情况总结 二.今明两天任务表 Member Today’s Task Tomorrow’s Task 江昊 了解微信API,与社团服务平台创业公司嗨社团创始人沟通,了解其平台运营方案与商业模式 ...