【刷题】BZOJ 3591 最长上升子序列
Description
给出1~n的一个排列的一个最长上升子序列,求原排列可能的种类数。
Input
第一行一个整数n。
第二行一个整数k,表示最长上升子序列的长度。
第三行k个整数,表示这个最长上升子序列。
Output
第一行一个整数,表示原排列可能的种类数。
Sample Input
5
3
1 3 4
Sample Output
11
HINT
【样例说明】
11种排列分别为(1, 3, 2, 5, 4), (1, 3, 5, 2, 4), (1, 3, 5, 4, 2), (1, 5, 3, 2, 4), (1, 5, 3, 4, 2), (2, 1, 3, 5, 4), (2, 1, 5, 3, 4), (2, 5, 1, 3, 4), (5, 1, 3, 2, 4), (5, 1, 3, 4, 2), (5, 2, 1, 3, 4)。
【数据规模和约定】
对于30%的数据,1 <= n <= 11。
对于70%的数据,1 <= n <= 14。
对于100%的数据,1 <= n <= 15,答案小于2^31。
Solution
一道dp题
我们先考虑对一个数列求LIS的方法(\(log\) 的那个),一个 \(lis\) 数组,\(lis[i]\) 记录长度为 \(i\) 的LIS的末尾最小可以是多少
对于 \(lis\) 整个数组,不难发现它是单调递增的,所以我们可以用二进制表示它,一样是01表示某个数是否出现在 \(lis\) 数组中,因为递增,所以我们这要知道有哪些数在里面,就可以还原出原来的 \(lis\) 数组
然后考虑本题的dp,我们用一个 \(f\) ,考虑对于当前的LIS,插入新数的情况
所以要保存每个数的三个状态
一是这个数还没有被考虑,二是这个数已被考虑,并且在LIS数组中出现,三是这个数已经被考虑,并且已经被弹出LIS数组
所以用三进制压位,012分别代表上面三个状态
转移时,枚举每一个LIS的情况,然后枚举每一个数,插入进去,再把当前的状态转移到插入后的状态
这种dp题看代码更好理解
#include<bits/stdc++.h>
#define ll long long
#define db double
#define ld long double
const int MAXN=16,MAXN_3=14348907+10;
int A[MAXN],n,m,pos[MAXN],lis[MAXN],vis[MAXN],val[MAXN],f[MAXN_3],ans,qexp3[MAXN];
template<typename T> inline void read(T &x)
{
T data=0,w=1;
char ch=0;
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-')w=-1,ch=getchar();
while(ch>='0'&&ch<='9')data=((T)data<<3)+((T)data<<1)+(ch^'0'),ch=getchar();
x=data*w;
}
template<typename T> inline void write(T x,char c='\0')
{
if(x<0)putchar('-'),x=-x;
if(x>9)write(x/10);
putchar(x%10+'0');
if(c!='\0')putchar(c);
}
template<typename T> inline void chkmin(T &x,T y){x=(y<x?y:x);}
template<typename T> inline void chkmax(T &x,T y){x=(y>x?y:x);}
template<typename T> inline T min(T x,T y){return x<y?x:y;}
template<typename T> inline T max(T x,T y){return x>y?x:y;}
int main()
{
read(n);read(m);
for(register int i=1;i<=m;++i)
{
read(A[i]);
A[i]--;
pos[A[i]]=i;
if(i>=2&&A[i-1]>A[i])
{
write(0,'\n');
return 0;
}
}
qexp3[0]=1;
for(register int i=1;i<=n;++i)qexp3[i]=qexp3[i-1]*3;
f[0]=1;
for(register int i=0;i<qexp3[n];++i)
{
if(!f[i])continue;
int x=i,lislen=0,app=0;
for(register int j=0;j<n;++j)
{
val[j]=vis[j]=x%3;
x/=3;
if(vis[j])app++;
if(val[j]==1)lis[lislen++]=j;
}
if(app==n)
{
ans+=f[i];
continue;
}
int ins=0;
for(register int j=0;j<n;++j)
{
if(vis[j])continue;
if(pos[j]>1&&!vis[A[pos[j]-1]])continue;
while(ins<lislen&&lis[ins]<j)ins++;
if(ins==m)continue;
int nxt=i+qexp3[j];
if(ins<lislen)nxt+=qexp3[lis[ins]];
f[nxt]+=f[i];
}
}
write(ans,'\n');
return 0;
}
【刷题】BZOJ 3591 最长上升子序列的更多相关文章
- BZOJ.3591.最长上升子序列(状压DP)
BZOJ 题意:给出\(1\sim n\)的一个排列的一个最长上升子序列,求原排列可能的种类数. \(n\leq 15\). \(n\)很小,参照HDU 4352这道题,我们直接把求\(LIS\)时的 ...
- BZOJ 2423 最长公共子序列
Description 字符序列的子序列是指从给定字符序列中随意地(不一定连续)去掉若干个字符(可能一个也不去掉)后所形成的字符序列.令给定的字符序列X=“x0,x1,…,xm-1”,序列Y=“y0, ...
- BZOJ 3173 最长上升子序列(树状数组+二分+线段树)
给定一个序列,初始为空.现在我们将1到N的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字,我们都想知道此时最长上升子序列长度是多少? 由于序列是顺序插入的,所以当前插入的数字对之 ...
- BZOJ 5427: 最长上升子序列
$f[i] 表示长度为i的最长上升子序列的最后一位的最小值是多少$ 对于普通的$LIS我们可以二分确定位置去更新$ 再来考虑对于这个,如果有某一位没有确定的话 那么这一位是可以随便取的,也就是说,所有 ...
- bzoj 3173 最长上升子序列
Written with StackEdit. Description 给定一个序列,初始为空.现在我们将\(1\)到\(N\)的数字插入到序列中,每次将一个数字插入到一个特定的位置.每插入一个数字, ...
- #leetcode刷题之路32-最长有效括号
给定一个只包含 '(' 和 ')' 的字符串,找出最长的包含有效括号的子串的长度. 示例 1:输入: "(()"输出: 2解释: 最长有效括号子串为 "()"示 ...
- #leetcode刷题之路14-最长公共前缀
编写一个函数来查找字符串数组中的最长公共前缀. 如果不存在公共前缀,返回空字符串 "". 示例 1: 输入: ["flower","flow" ...
- #leetcode刷题之路5-最长回文子串
给定一个字符串 s,找到 s 中最长的回文子串.你可以假设 s 的最大长度为 1000. 示例 1:输入: "babad"输出: "bab"注意: " ...
- 刷题总结:最长公共字串(spoj1811)(后缀自动机)
题目: 就不贴了吧···如题: 题解: 后缀自动机模版题:没啥好说的···· 代码: #include<iostream> #include<cstdio> #include& ...
随机推荐
- 如何掌握 Kubernetes ?系统学习 k8s 的大纲一份
深度剖析 Kubernetes 深度剖析 k8s 如何学习 Kubernetes ?如何入门 Kubernetes? 为了帮帮初学者,2018 年 InfoQ 旗下(就是你知道的那个 InfoQ 哇) ...
- MFC -- Excel操作简介(基于VS2010)
一.添加与 Excel 操作相关的头文件 项目 -> 类向导,在右上方有一个下拉栏,选择其中的 类型库中的MFC类(T),即可看到下图所示界面,选择“文件”选项,然后在下方的位置选项中添加本地文 ...
- tensorflow-gpu与CUDA、CUDNN的版本问题
折腾了将近两天的时间,终于搞好了,感觉把所有的坑都踩过了一遍.....泪牛满面 1.先安装CUDA,并安装,尽量不要下载最新版本的,坑,本机可以下载最新本10.0版本,但与CUDNN和tensorfl ...
- dvwa——sql手动注入和sqlmap自动注入
手动注入 low: 源码: <?php if( isset( $_REQUEST[ 'Submit' ] ) ) { // Get input $id = $_REQUEST[ 'id' ]; ...
- Tomcat部署与使用
Tomcat简介 Tomcat是Apache软件基金会(Apache Software Foundation)的Jakarta 项目中的一个核心项目,由Apache.Sun和其他一些公司及个人共同开发 ...
- [译文]c#扩展方法(Extension Method In C#)
原文链接: https://www.codeproject.com/Tips/709310/Extension-Method-In-Csharp 介绍 扩展方法是C# 3.0引入的新特性.扩展方法使你 ...
- node 集群与稳定
node集群搭建好之后,还需要考虑一些细节问题. 性能问题 多个工作进程的存活状态管理 工作进程的平滑重启 配置或者静态数据的动态重新载入 其它细节 1 进程事件 Node子进程对象除了send()方 ...
- 马赛克是否无法逆转?Python简单消除,看片无忧!
图片水印,轻松去除 前段时间玩过了全民K歌,不知道大家是否玩过,还是做得挺好的,就我这嗓子都能唱出张学友的味道,其中更是有消除噪声的功能,就是朋友们都在吃鸡大叫,我在旁边唱歌依然不受影响. 既然声音可 ...
- 查看jdk使用的是什么垃圾收集器
一.方法一 打印虚拟机所有参数 [root@localhost ~]# java -XX:+PrintFlagsFinal -version | grep : uintx InitialHeap ...
- Daily Scrum6 11.10
今日任务: 徐钧鸿:codingcook的sql相关内容,并在进行复查张艺:继续用户管理部分代码黄可嵩:学习搜索的知识,继续进行搜索的移植和响应徐方宇:动态控件和页面间信息传递以及页面响应事件机制试验 ...