Description

You are given a directed graph consisting of \(n\) vertices and \(m\) edges (each edge is directed, so it can be traversed in only one direction). You are allowed to remove at most one edge from it.

Can you make this graph acyclic by removing at most one edge from it? A directed graph is called acyclic iff it doesn't contain any cycle (a non-empty path that starts and ends in the same vertex).

Input

The first line contains two integers \(n\) and \(m\)

\(\left(2 \le n \le 500, 1 \le m \le \min\left(n \cdot\left(n - 1\right), 100000\right)\right)\) — the number of vertices and the number of edges, respectively.

Then \(m​\) lines follow. Each line contains two integers u and v denoting a directed edge going from vertex u to vertex v \(\left(1 \le u, v \le n, u \neq v\right)​\). Each ordered pair \(\left(u, v\right)​\) is listed at most once (there is at most one directed edge from u to v).

Output

If it is possible to make this graph acyclic by removing at most one edge, print YES. Otherwise, print NO.

Examples

Input

3 4
1 2
2 3
3 2
3 1

Output

YES

Input

5 6
1 2
2 3
3 2
3 1
2 1
4 5

Output

NO

Note

In the first example you can remove edge \(2 \rightarrow 3\) and the graph becomes acyclic.

In the second example you have to remove at least two edges (for example, \(2 \rightarrow 1\) and \(2 \rightarrow 3\)) in order to make the graph acyclic.

题解

有向图无环当且仅当存在拓扑序,而删掉边\(\left(u, v\right)\)的作用是使点\(v\)的入度减一,尽管边的数量是\(100000\),但是对于同一个顶点,删掉不同入边的效果是等价的,所以我们只需要枚举每个顶点,将其入度减一,检查是否存在拓扑序即可。

#include <bits/stdc++.h>
using namespace std;
const int maxn = 511;
vector<int> w[maxn];
int d1[maxn], d2[maxn];
int main() {
int n, m;
scanf("%d%d", &n, &m);
for (int i = 1; i <= m; ++i) {
int u, v;
scanf("%d%d", &u, &v);
w[u].push_back(v);
++d1[v];
}
bool fg = false;
for (int i = 1; i <= n; ++i) {
if (d1[i] == 0) continue;
for (int j = 1; j <= n; ++j)
d2[j] = d1[j];
--d2[i];
queue<int> que;
int ct = 0;
for (int j = 1; j <= n; ++j) {
if (!d2[j]) {
que.push(j);
++ct;
}
}
while (!que.empty()) {
int u = que.front();
que.pop();
for (int v : w[u]) {
if (--d2[v] == 0) {
que.push(v);
++ct;
}
}
}
if (ct == n) {
fg = true;
break;
}
}
puts(fg ? "YES" : "NO");
return 0;
}

CodeForces 915D Almost Acyclic Graph的更多相关文章

  1. codeforces 915D Almost Acyclic Graph 拓扑排序

    大意:给出一个有向图,问能否在只去掉一条边的情况下破掉所有的环 解析:最直接的是枚举每个边,将其禁用,然后在图中找环,如果可以就YES,都不行就NO 复杂度O(N*M)看起来不超时 但是实现了以后发现 ...

  2. Almost Acyclic Graph CodeForces - 915D (思维+拓扑排序判环)

    Almost Acyclic Graph CodeForces - 915D time limit per test 1 second memory limit per test 256 megaby ...

  3. 【CodeForces】915 D. Almost Acyclic Graph 拓扑排序找环

    [题目]D. Almost Acyclic Graph [题意]给定n个点的有向图(无重边),问能否删除一条边使得全图无环.n<=500,m<=10^5. [算法]拓扑排序 [题解]找到一 ...

  4. algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)

    Given a Weighted Directed Acyclic Graph and a source vertex in the graph, find the shortest paths fr ...

  5. Codeforces 459E Pashmak and Graph(dp+贪婪)

    题目链接:Codeforces 459E Pashmak and Graph 题目大意:给定一张有向图,每条边有它的权值,要求选定一条路线,保证所经过的边权值严格递增,输出最长路径. 解题思路:将边依 ...

  6. D. Almost Acyclic Graph 判断减一条边能不能得到DAG

    D. Almost Acyclic Graph time limit per test 1 second memory limit per test 256 megabytes input stand ...

  7. ACM - 最短路 - CodeForces 295B Greg and Graph

    CodeForces 295B Greg and Graph 题解 \(Floyd\) 算法是一种基于动态规划的算法,以此题为例介绍最短路算法中的 \(Floyd\) 算法. 我们考虑给定一个图,要找 ...

  8. Almost Acyclic Graph CodeForces - 915D (思维,图论)

    大意: 给定无向图, 求是否能删除一条边后使图无环 直接枚举边判环复杂度过大, 实际上删除一条边可以看做将该边从一个顶点上拿开, 直接枚举顶点即可 复杂度$O(n(n+m))$ #include &l ...

  9. Almost Acyclic Graph Codeforces - 915D

    以前做过的题都不会了.... 此题做法:优化的暴力 有一个显然的暴力:枚举每一条边试着删掉 注意到题目要求使得图无环,那么找出图上任意一个环,都应当要在其某一处断开(当然没有环是YES) 因此找出图中 ...

随机推荐

  1. 定制选择范围的按钮RangeButton

    定制选择范围的按钮RangeButton 效果: 源码: RangeButton.h 与 RangeButton.m // // RangeButton.h // PulsingView // // ...

  2. Man's Best Friend: The Science Behind the Dog and Human Relationship

    http://info.thinkfun.com/stem-education/mans-best-friend-the-science-behind-the-dog-and-human-relati ...

  3. kudu安装部署

    安装部署节点规划 节点 kudu-master kudu-tserver node01 是 是 node02 是 是 node03 是 是 配置本地Yum的Repository 下载kudu安装yum ...

  4. Java使用HTTP编程模拟多参数多文件表单信息的请求与处理

    本文目的是提供Java环境下模拟浏览器页面提交多参数多文件表单请求以及解析请求的Demo代码.这里用Java提供的HttpURLConnection类做HTTP请求,再原始点可以直接使用socket. ...

  5. Angular总结二:Angular 启动过程

    要弄清楚 Angular 的启动过程,就要弄明白 Angular 启动时加载了哪个页面,加载了哪些脚本,这些脚本做了哪些事? 通过 Angular 的编译依赖文件 .angular-cli.json ...

  6. acl 4 year statistics

  7. css3动画效果小结

    css3的动画功能有以下三种: 1.transition(过度属性) 2.animation(动画属性) 3.transform(2D/3D转换属性) 下面逐一进行介绍我的理解: 1.transiti ...

  8. Loj #2256. 「SNOI2017」英雄联盟

    题目 我就是个丝薄 如果要用\(dp_i\)表示凑出\(i\)的最小花费显然不可能的 之后大力猜想能凑出来的状态不会很多,我的暴力也告诉我不是很多,好像也确实不多的样子,大概\(4e4\)左右 但是我 ...

  9. jQuery文字“橡皮圈“特效

    <!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...

  10. virtualbox+vagrant学习-2(command cli)-20-vagrant suspend命令

    Suspend 格式: vagrant suspend [options] [name|id] 这个suspend命令将挂起vagrant正在管理的客户机,而不是完全关闭或摧毁它. 挂起有效地保存了计 ...