N选项

N spec allows for 20MHz wide channels similar to previous specs but can also combine two 20MHz channels to form a 40MHz channel for increased bandwidth. N spec also uses MIMO (Multiple Input/Multiple Output) to increase throughput. MIMO means multiple antennas will operate together to provide better signal coverage and increased data rates. The number of MIMO spacial streams that your router and client adapter support will affect their maximum rate and may result in different rates for transmitting and receiving. For instance, on a 20MHz wide channel with a router capable of 2x2 MIMO and a client capable of 1x2 MIMO with a strong signal, the client would have a 65mbps transmission rate but would would have 130mbps receive rate. A table of maximum link rates vs MIMO spacial streams * channel width is available here and you can find how many streams your devices support here or also commonly found listed in the device's technical specs.
N spec is also capable of operating on both the 2.4GHz band and the 5GHz band. Many N spec capable devices are only capable of operating on a single band or are able to operate on one band at a time. For instance, a Cisco E1000 is only capable of using the 2.4GHz band, a Cisco E2000 is capable of using either band but can only operate on one band at a time because it only has one radio, and a Cisco E3000 is capable of operating on both bands simultaneously because it has two radios - one for each band. The same applies to client adapters. Check your device's documentation to find out what bands it is capable of using and whether it is capable of using both simultaneously.

20MHz vs 40MHz

The N spec is able to use 40MHz of bandwidth for increased data rates, but to maintain compatibility with legacy systems, it requires one main 20MHz channel plus a free adjacent channel at ±20MHz. The main channel is used for legacy (a/b/g) or other clients that aren't able to transmit at 40MHz. The spec also requires the whole WLAN to only use the main 20MHz channel if it detects anything using the additional 20MHz channel.
In 5GHz band, it shouldn't be that difficult to find two free channels, so go ahead and turn 40MHz on.
However, when using 2.4GHz, using 40MHz isn't nearly as easy since the channels were already overlapped in 11b and 11g mode.
Effectively to use this feature, you will block 7–9 of the 13 channels and, of course, ch12 and ch13 aren't available in North America. So yes, it's possible that your neighbors will hate you if you turn this option on. This is why there was a lot of pushback at the end of the final IEEE 802.11n ratification to entirely ban 40Mhz in 2.4GHz. That didn't happen as 40MHz is still appropriate for some situations (ie: a warehouse) but the bottom line remains, enabling 40MHz in the 2.4GHz band isn't a good idea for dense residential areas.

Illustrations of 2.4GHz Channels

These illustrations show ALL Wifi channels but channel 14 is only available in Japan for B spec, so you can pretty much forget about your dreams to fit two 40MHz channels in the 2.4GHz Spectrum. As you can see, there is barely enough room to fit three non-overlapping 20MHz channels, or one 40MHz channel + one 20MHz channel. The tops of the blocks reflect the actual 20 or 40 MHz required by the channel whereas the bottoms account for the extra 1MHz on each end that the channel is allowed to attenuate, hence the 22MHz and 42MHz maximum widths. It may be possible to use channel 1 Upper and 13 Lower to produce two 40MHz channels but the signals may bleed into each other with that 1MHz they're each allowed to before attenuating.

Table of 2.4GHz Channels

Green are good choices that have minimal overlap, Red are bad choices that overlap too much, and White are uncommonly used channels that should only be used in substitute of channel 11.

a = Setting generally not supported by devices in the U.S.

Picking a Channel

To check what channels your neighbors are using, open the Web-GUI and navigate to Status->Wireless. Click the "Site Survey" button at the bottom to view all AP's nearby and use the information you learned above to pick your channel. You may want to experiment with different channels but it is strongly recommend to always keep your control channel set to either 1, 6, or 11 so that you minimize interference for yourself and your neighbors.

Wireless Security

You MUST use WPA2 authentication with AES encryption only, or use no security at all if you wish to achieve N rates. Anything else is against the N spec and typically results in the client falling back to G rates.
If you need to support another type of encryption for older clients in mixed mode, then create Multiple WLANs.

Advanced Settings

WMM is required to be on for any Wi-Fi Alliance Certified N product. By default WMM is already on but many users disable it which may prevent N rates or lower throughput.

Actual Speeds

Even if you are connecting to your N router at 130 mbps or 270 mbps, actual throughput will be roughly 60% of the link rate due to modulation and error correction. The best test is to play with transmit power and channels to figure out what works best for you. Typically lowering the transmit power to 20-40 mW is good for N spec routers, going above the default 70 mW will likely reduce your throughput in addition to potentially overheating the radio and damaging it.

WIFI: N, Legacy and AC的更多相关文章

  1. Wi-Fi DFS与TPC介绍

    DFS与TPC是wifi认证的其中一项测试内容,如果不需要DFS功能,可以不进行测试,但是某些属于DFS频段的wifi信道则不允许使用. 1. 什么是WIFI Auto DFS? 通俗的说就是:躲雷达 ...

  2. 2.4G还是5G?带你选择最正确的路由器

    智能设备井喷的时代,无线路由器成为家庭中最重要的电器设备.稳定性.连接速度.信号强弱都是无线路由使用体验的重要组成部分.究竟如何选购与配置路由器才能得到最好的用户体验呢? 当你在选购无线路由器的时候是 ...

  3. 转载:WIFI无线协议802.11a/b/g/n/ac的演变以及区别

    WIFI无线协议802.11a/b/g/n/ac的演变以及区别 版权声明:版权所有,转载须注明出处. https://blog.csdn.net/Brouce__Lee/article/details ...

  4. WIFI 802.11 a/b/g/n/ac

    802.11 a/b/g/n/ac FHSS: Frequency-hopping spread spectrum (FHSS) is a method of transmitting radio s ...

  5. WIFI无线协议802.11a/b/g/n/ac的演变以及区别

    摘自:https://blog.csdn.net/Brouce__Lee/article/details/80956945 毫无疑问,WiFi的出现普及带给我们巨大的上网便利,所以了解一下WiFi对应 ...

  6. AC+AP组网无线WiFi网速超慢延迟卡顿问题解决

    AP是什么? AP是Access Point的简称,即无线接入点,其作用是把局域网里通过双绞线传输的有线信号(即电信号)经过编译,转换成无线电信号传递给电脑.手机等无线终端,与此同时,又把这些无线终端 ...

  7. 802.11协议帧格式、Wi-Fi连接交互过程、无线破解入门研究

    相关学习资料 Linux黑客大曝光: 第8章 无线网络 无线网络安全攻防实战进阶 无线网络安全 黑客大曝光 第2版 http://zh.wikipedia.org/wiki/IEEE_802.11 h ...

  8. Android Wifi 主动扫描 被动扫描

    介绍主动扫描,被动扫描以及连接的wifi的扫描过程 参考文档 <802.11无线网络权威指南> <80_Y0513_1_QCA_WCN36X0_SOFTWARE_ARCHITECTU ...

  9. 为什么房间的 Wi-Fi 信号这么差

    最近把家里主卧整成了个小影院,由于之前房子装修时网线端口与电源插口布置太少,导致家庭网络架设变得麻烦起来,最后终于通过「无线中继」技术达到了全屋满格 Wi-Fi 的效果. 在 Wi-Fi 架设过程中, ...

随机推荐

  1. linux umask命令

    umask命令 umask命令功能:显示.设置文件的缺省权限. umask命令语法:umask [-S] -S:以rwx形式显示新建文件或目录的缺省权限. 执行umask: 显示0022 第一个0:特 ...

  2. Asp.Net中自以为是的Encode

    Asp.Net 引擎可能是不错,但是它把程序员想的太笨,会自以为是做很多自动的 Encode 和 Decode,以下文举例: 如果客户端我们 post 了如下的数据, 但是你实际得到的是: 也就是说, ...

  3. 用emoji表情包来可视化北京市历史天气状况!

    用emoji表情包来可视化北京市历史天气状况!   最近有了一个突如其来的想法,主要是看到了R社区有大神做了emoji表情包,并已经打通了ggplot的链接,所以想用ggplot结合emoji表情做一 ...

  4. 如何获取隔壁wifi密码,非暴力破解

    目前常见的Wi-Fi加密方式有WEP.WPA2和WPS(链接为各自的破解方式),不过有网友反映以往破解WPA2的方法耗时太长,而且不适用于所有WPS启动的接入点.而今天介绍的这种方法则更加省时省力. ...

  5. bzoj 1975 [Sdoi2010]魔法猪学院

    1975: [Sdoi2010]魔法猪学院 Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 1758  Solved: 557[Submit][Statu ...

  6. uva 1025 A Spy in the Metro 解题报告

    A Spy in the Metro Time Limit: 3000MS     64bit IO Format: %lld & %llu Submit Status uDebug Secr ...

  7. Java网络编程技术2

    3. UDP数据报通信 UDP通信中,需要建立一个DatagramSocket,与Socket不同,它不存在“连接”的概念,取而代之的是一个数据报包——DatagramPacket.这个数据报包必须知 ...

  8. 如何在Windows 7 或Vista中修改MTU

    Windows操作系统使用Maximum Transmission Unit (MTU) 来确定在下面的网络层上可以传输的协议数据包(protocol data packet)的最大尺寸. MTU参数 ...

  9. Android studio导入开源项目

    前几天从github上下载一个开源项目,发现他并不是以前Eclipse那种的目录结构 而是最近在用到的android studio的文件目录.从上图中我们可以看到多次出现了gradle这个单词.And ...

  10. HDU 4585 Shaolin (STL)

    没想到map还有排序功能,默认按照键值从小到大排序 #include <cstdio> #include <iostream> #include <cstring> ...