Authors: Joong-Tae Park, Jae-Bok Song

Department:Department  of  Mechanical  Engineering,  Korea  University,  Anam-ro  145,  Seongbuk-gu,  Seoul,  South  Korea(机械工程系,高丽大学,韩国)

Exploration is one of the most important functions for a mobile service robot because a map is required to carry out various tasks. A suitable strategy is needed to efficiently explore an environment and to build an accurate map. This  study  proposed  the  use  of  several  gains  (information,  driving,  localization)  that if considered during exploration, can simultaneously improve the efficiency of the exploration process and  quality  of  the  resulting  map. Considering  the  information  and  driving  gains  reduces  behavior  that leads a robot to explore a previously visited place, and  thus  the  exploration  distance  is  reduced. In addition, the robot can select a favorable path for localization by considering the localization gain during exploration,  and  the  robot  can  estimate  its  pose  more  robustly  than  other  methods  that  do  not  consider localizability during exploration. This proposed exploration method was verified by various experiments, which  verified  that  a  robot  can  build  an  accurate  map  fully  autonomously  and  effciently  in  various  home environments  using  the  proposed  method.(探索是移动服务机器人最重要的功能之一,因为地图是执行不同任务的必需品。因此需要合适的策略来有效地探索一个环境并且生成准确的地图。这个研究提出如果在探索中使用多个增量[信息,驾驶,定位],将能同步地提高探索过程的有效性和生成地图的质量。考虑信息和驾驶增量将降低机器人探索之前已经到过的地方的行为,因此探索距离被减小的。除此之外,在探索时考虑定位机器人将能选择对定位有效的路径,因而机器人将比不考虑定位估计姿态更有力。该建议的探索方法由不同的实验验证,结果表明使用该建议的方法机器人能在不同的家庭环境中完全自动而有效地建立准确地图。)

1. Introduction

In recent years, there have been various trials to  extend  robotic technology to non-industrial applications such as surgery, cleaning, patrol, and  so on. Indoor  mobile  home  service  robots  are  receiving attention especially, because of their economic potential and social expectations. In order to make mobile service robots more accessible  in  home  environments, the  problem  of  environmental modeling, which is one of the fundamental problems in mobile robots, should be solved first. This  is  because  a  mobile  service robot uses a map to carry out various tasks, including navigation, human-robot  interaction,  and  so  on. Therefore, the simultaneous localization  and  mapping  (SLAM)  community  has  developed  many efficient and highly accurate map-building techniques, but most of these techniques offer no proposals on how a robot can be made  to  function  autonomously. However, autonomy is an important factor for environmentalmodeling of service robots. Therefore, various  methods  of  exploration  –  the  name  typically  given  to  automated  map-building  –  have  been  proposed.

Frontier-based  exploration,  which  explores  the  unknown  area in a grid map, was proposed in. In frontier-based exploration, a  robot  detects  the  regions  between  the  unexplored  area  and  the open space, designated as the frontier. The robot then moves to the new frontiers to explore them until the entire environment has been explored. Frontier-based exploration has the draw-back of not being able to use information known about obstacles,which can serve as a guide for the robot to move and correct its localization error. To overcome this problem, an autonomous exploration method using regions of interest was proposed.In this research, the view that would result in the sensor data that could  be  used  to  maximize  exploration  efficiency  was  estimated. While this approach does improve exploration efficiency, it does not address map accuracy at all. (基于前沿的探索,就是在格网地图上搜索未知区域,被提出来。在基于前沿的探索中,机器人探测未探索的区域和公开空间之间的区域,这部分被划分为前沿。机器人于是移动到新的前沿探索它们直到整个环境都被探索了。基于前沿的探索有不能使用障碍物的信息的缺点,这其实可以作为机器人移动的引导并且纠正定位误差。为了克服这个问题,使用感兴趣区域的自动探索被提出来。在该研究中,可能会导致被用来最大化探索效率的传感器数据的视图得到估计。虽然该方法确实提高了探索效率,但是它并没有解决地图精度。)

The aforementioned strategies are considered metric-based exploration methods. Another type of exploration method exists, known as topological information-based exploration. The most representative topological information-based exploration strategy is based on the Generalized Voronoi Graph (GVG) representation.In Topological SLAM, developed for exploration of an unknown environment, the robot traces all GVG edges and visits all meet points and boundary points

(上述策略被称为基于度量的探索方法。还有另一种探索方法类型的存在,即基于拓扑信息的探索。最具代表性的基于拓扑信息的探索方法是基于广义Voronoi图的表示。)

 

Sensor Fusion-based Exploration in Home Environments using Information, Driving and Localization Gains(基于传感器融合的使用信息、驾驶和定位增益在家庭环境中的探索)的更多相关文章

  1. Sensor fusion(传感器融合)

    From Wikipedia, the free encyclopedia 来自维基百科,免费的百科Sensor fusion is combining of sensory data or data ...

  2. Udacity carnd2 Sensor Fusion, Extended Karman Filter (English)

    Extended Karman Filter Zhenglei 2018 January This is a project to estimate the car position from Lid ...

  3. 【sqli-labs】 less26 GET- Error based -All you SPACES and COMMENTS belong to us(GET型基于错误的去除了空格和注释的注入)

    看了下源码 所有的注释形式和反斜线,and,or都被了过滤掉了 单引号没有过滤 空格也被过滤了 http://localhost/sqli-labs-master/Less-26/?id=1' htt ...

  4. C# based on PdfSharp to split pdf files and get MemoryStream C#基于PdfSharp拆分pdf,并生成MemoryStream

    install-package PdfSharp -v 1.51.5185-beta using System; using PdfSharp.Pdf; using System.IO; using ...

  5. Anveshak: Placing Edge Servers In The Wild

    Anveshak:在野外放置边缘服务器 本文为SIGCOMM 2018 Workshop (Mobile Edge Communications, MECOMM)论文. 笔者翻译了该论文.由于时间仓促 ...

  6. Gmapping笔记

    2D-slam 激光slam: 开源代码的比较HectorSLAM Gmapping KartoSLAM CoreSLAM LagoSLAM 作者:kint_zhao 原文:https://blog. ...

  7. 三维重建7:Visual SLAM算法笔记

    VSLAM研究了几十年,新的东西不是很多,三维重建的VSLAM方法可以用一篇文章总结一下. 此文是一个好的视觉SLAM综述,对视觉SLAM总结比较全面,是SLAM那本书的很好的补充.介绍了基于滤波器的 ...

  8. NVMe - NB的特性

    翻译一下,纯粹是为了记住这些特性: NVMe provides the following benefits: ● Ultra-low latency 非常低的延迟 ● Very high throu ...

  9. AR(增强现实) 知识篇

    增强现实(Augmented Reality,简称AR),是一种实时地计算摄影机影像的位置及角度并加上相应图像的技术,这种技术的目标是在屏幕上把虚拟世界套在现实世界并进行互动.这种技术估计由1990年 ...

随机推荐

  1. InitComponent的使用

    网页中的数据,有些是不在网页上改变的,像一些个人信息,比如:头像,当前用户名,友情链接等等,每次请求该页面都要重新加载,这样很消耗服务器资源,会降低服务器的性能,这个时候我们可以把这些不变的信息,统一 ...

  2. LayeruI Loadding Custom word

    var getTableResult = function (pageIndex, pageSize) { var index = layer.load(2, { content: '加载中..... ...

  3. ubuntu 软件包系统已损坏 解决方法

    sudo apt-get clean sudo apt-get -f install sudo apt-get upgrade

  4. DBA 招聘

    数据库管理员(资深) 眼控科技 10-19万 72小时反馈 上海 6小时前 大专及以上 2年以上经验 普通话 25-35岁 绩效奖金 带薪年假 午餐补助 定期体检 年底双薪 五险一金 职位描述: 工作 ...

  5. Bean Validation技术实现对Javabean的校验

    概述:在java开发时,由于分层的原因(表现层-控制层-业务层-数据持久层),有时候需要对传入的Javabean进行校验,如果过多的校验会导致比较繁琐,做重复的工作,下面将介绍Bean Validat ...

  6. java程序运行时间

    方法一 long startTime = System.currentTimeMillis(); //获取开始时间 doSomething(); //测试的代码段 long endTime = Sys ...

  7. sqldatareader无法得到output参数的解决

    只需要在所有的sqldatareader结束后,加上一句就可以得到输出参数了. sdr.Close(); Object ObjCount = cmd.Parameters["@Count_P ...

  8. Python3 chr() 函数

    Python3 chr() 函数 Python3 内置函数 描述 chr() 用一个整数作参数,返回一个对应的字符. 语法 以下是 chr() 方法的语法: chr(i) 参数 i -- 可以是 10 ...

  9. rapidjson使用

    Value构造 Value对象最好先声明后初始化,如果声明直接初始化可能出错. rapidjson::Value a; a = val[i]; Value传参 Value传参,最好显式使用右值,如st ...

  10. 绑定服务-----------binderService TimerTask的使用

    绑定服务 服务中通过定义Binder对象的子类让这个子类成为桥梁   在onBind()中返回子类对象 这样就可以在activity中调用这个子类的方法 在Activity中通过ServiceConn ...