Debezium for PostgreSQL to Kafka
In this article, we discuss the necessity of segregate data model for read and write and use event sourcing for capture detailed data changing. These two aspects are critical for data analysis in big data world. We will compare some candidate solutions and draw a conclusion that CDC strategy is a perfect match for CQRS pattern.
Context and Problem
To support business decision-making, we demand fresh and accurate data that’s available where and when we need it, often in real-time.
But,
- as business analysts try to run analysis, the production databases are (will be) overloaded;
- some process details (transaction stream) valuable for analysis may have been overwritten;
- OLTP data models may not be friendly to analysis purpose.
We hope to come out with a efficient solution to capture detailed transaction stream and ingest data to Hadoop for analysis.
CQRS and Event Sourcing Pattern
CQRS-based systems use separate read and write data models, each tailored to relevant tasks and often located in physically separate stores.
Event-sourcing: Instead of storing just the current state of the data in a domain, use an append-only store to record the full series of actions taken on that data.
Decouple: one team of developers can focus on the complex domain model that is part of the write model, and another team can focus on the read model and the user interfaces.
Ingest Solutions - dual writes
Dual Write
- brings complexity in business system
- is less fault tolerant when backend message queue is blocked or under maintenance
- suffers from race conditions and consistency problems
Business log
- concerns of data sensitivity
- brings complexity in business system
Ingest Solutions - database operations
Snapshot
- data in the database is constantly changing, so the snapshot is already out-of-date by the time it’s loaded
- even if you take a snapshot once a day, you still have one-day-old data in the downstream system
- on a large database those snapshots and bulk loads can become very expensive
Data offload
- brings operational complexity
- is inability to meet low-latency requirements
- can’t handle delete operations
Ingest Solutions - capture data change
process only “diff” of changes
- write all your data to only one primary DB;
- extract two things from that database:
- a consistent snapshot and
- a real-time stream of changes
Benefits:
- decouple with business system
- get a latency of less than a second
- stream is ordering of writes, less race conditions
- pull strategy is robust to data corruption (log replaying)
- support as many variant data consumers as required
Ingest Solutions - wrapup
Considering data application under the picture of business application, we will focus on the ‘capture changes to data’ components.
Open Source for Postgres to Kafka
Sqoop
can only take full snapshots of a database, and not capture an ongoing stream of changes. Also, transactional consistency of its snapshots is not wells supported (Apache).
pg_kafka
is a Kafka producer client in a Postgres function, so we could potentially produce to Kafka from a trigger. (MIT license)
bottledwater-pg
is a change data capture (CDC) specifically from PostgreSQL into Kafka (Apache License 2.0, from confluent inc.)
debezium-pg
is a change data capture for a variety of databases (Apache License 2.0, from redhat)
Debezium for Postgres is comparatively better.
Debezium for Postgres Architecture
debezium/postgres-decoderbufs
- manually build the output plugin
- change PG configuration, preload the lib file and restart PG service
debezium/debezium
- compile and package the dependent jar files
Kafka connect
- deploy distributed kafka connect service
- start a debezium connector in Kafka connect
HBase connect
- development work: implement a hbase connect for PG CDC events
- Start a hbase connector in Kafka connect
Spark streaming
- development work: implement data process functions atop Spark streaming
Considerations
Reliability
For example
- be aware of data source exception or source relocation, and automatically/manually restart data capture tasks or redirect data source;
- monitor data quality and latency;
Scalability
- be aware of data source load pressure, and automatically/manually scale out data capture tasks;
Maintainability
- GUI for system monitoring, data quality check, latency statistics etc.;
- GUI for configuring data capture task scale out
Other CDC solutions
Databus (linkedIn): no native support for PG
Wormhole (facebook): not opensource
Sherpa (yahoo!) : not opensource
BottledWater (confluent): postgres Only (NOT maintained any more!!)
Maxwell: mysql Only
Debezium (redhat): good
Mongoriver: only for MongiDB
GoldenGate (Oracle): for Oracle and mysql, free but not opensource
Canal & otter (alibaba): for mysql world replication
Debezium for PostgreSQL to Kafka的更多相关文章
- kafka connect rest api
1. 获取 Connect Worker 信息curl -s http://127.0.0.1:8083/ | jq lenmom@M1701:~/workspace/software/kafka_2 ...
- debezium关于cdc的使用(上)
博文原址:debezium关于cdc的使用(上) 简介 debezium是一个为了捕获数据变更(cdc)的开源的分布式平台.启动并指向数据库,当其他应用对此数据库执行inserts.updates.d ...
- 基于Apache Hudi和Debezium构建CDC入湖管道
从 Hudi v0.10.0 开始,我们很高兴地宣布推出适用于 Deltastreamer 的 Debezium 源,它提供从 Postgres 和 MySQL 数据库到数据湖的变更捕获数据 (CDC ...
- 几篇关于MySQL数据同步到Elasticsearch的文章---第一篇:Debezium实现Mysql到Elasticsearch高效实时同步
文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484358&idx=1&sn=3a78347 ...
- Build an ETL Pipeline With Kafka Connect via JDBC Connectors
This article is an in-depth tutorial for using Kafka to move data from PostgreSQL to Hadoop HDFS via ...
- Kafka设计解析(八)- Exactly Once语义与事务机制原理
原创文章,首发自作者个人博客,转载请务必将下面这段话置于文章开头处. 本文转发自技术世界,原文链接 http://www.jasongj.com/kafka/transaction/ 写在前面的话 本 ...
- Kafka设计解析(八)Exactly Once语义与事务机制原理
转载自 技术世界,原文链接 Kafka设计解析(八)- Exactly Once语义与事务机制原理 本文介绍了Kafka实现事务性的几个阶段——正好一次语义与原子操作.之后详细分析了Kafka事务机制 ...
- pg 资料大全1
https://github.com/ty4z2008/Qix/blob/master/pg.md?from=timeline&isappinstalled=0 PostgreSQL(数据库) ...
- Awesome Go精选的Go框架,库和软件的精选清单.A curated list of awesome Go frameworks, libraries and software
Awesome Go financial support to Awesome Go A curated list of awesome Go frameworks, libraries a ...
随机推荐
- 无插件,无com组件,利用EXCEL、WORD模板做数据导出(一)
本次随笔主要讲述着工作中是如何解决数据导出的,对于数据导出到excel在日常工作中大家还是比较常用的,那导出到word呢,改如何处理呢,简单的页面导出问题应该不大,但是如果是标准的公文导出呢,要保证其 ...
- RecycleView实现侧滑删除item
对于列表空间的侧滑操作,网上有很多开源的空间可以使用,Google在它的新控件RecycleView中增加了侧滑的API,完全遵循Material Design设计规范,下面看看效果演示: 下面看看介 ...
- windows server 2008 远程桌面连接数修改--无限连接
1.开启远程桌面 我的电脑 | 属性 | 远程设置 | 远程 | 进允许运行使用网络级别身份验证的远程桌面的计算机连接(更安全)(N)
- codeblocks 更换颜色主题
关闭codeblocks,下载主题文件(colour_themes.conf).在关闭codeblocks的情况下,linux下的~/.config/codeblocks/下有个conf文件,将其备份 ...
- ECMAScript3的原型
function Super(){ // 父类 } function Sub(){ // 子类 } Sub.prototype = new Super(); Sub.prototype.constru ...
- C++,坑...
如果使用const全局变量,记得声明处的引用处都加extern. uint32_t等,t代表是typedef的,在stdint.h头文件里,C99后引入,记得先测试再用. accept函数的参数,记得 ...
- memcache简单操作
<?php $m = new Memcache(); $m->connect('localhost',11211); //获取版本 echo "server's version: ...
- springmvc中@RequestMapping的使用
通过RequestMapping注解可以定义不同的处理器映射规则. 1.1 URL路径映射 @RequestMapping(value="/item")或@RequestMappi ...
- centos7之iptables与firewalld
保障数据的安全性是继保障数据的可用性之后最为重要的一项工作.防火墙作为公网 与内网之间的保护屏障,在保障数据的安全性方面起着至关重要的作用. firewalld与iptables iptables f ...
- 在winform嵌入外部应用程序
应朋友要求,需要将一个第三方应用程序嵌入到本程序WinForm窗口,以前在VB6时代做过类似的功能,其原理就是利用Windows API中FindWindow函数找到第三方应用程序句柄,再利用SetP ...