Debezium for PostgreSQL to Kafka
In this article, we discuss the necessity of segregate data model for read and write and use event sourcing for capture detailed data changing. These two aspects are critical for data analysis in big data world. We will compare some candidate solutions and draw a conclusion that CDC strategy is a perfect match for CQRS pattern.
Context and Problem
To support business decision-making, we demand fresh and accurate data that’s available where and when we need it, often in real-time.
But,
- as business analysts try to run analysis, the production databases are (will be) overloaded;
- some process details (transaction stream) valuable for analysis may have been overwritten;
- OLTP data models may not be friendly to analysis purpose.
We hope to come out with a efficient solution to capture detailed transaction stream and ingest data to Hadoop for analysis.

CQRS and Event Sourcing Pattern
CQRS-based systems use separate read and write data models, each tailored to relevant tasks and often located in physically separate stores.
Event-sourcing: Instead of storing just the current state of the data in a domain, use an append-only store to record the full series of actions taken on that data.

Decouple: one team of developers can focus on the complex domain model that is part of the write model, and another team can focus on the read model and the user interfaces.
Ingest Solutions - dual writes
Dual Write
- brings complexity in business system
- is less fault tolerant when backend message queue is blocked or under maintenance
- suffers from race conditions and consistency problems
Business log
- concerns of data sensitivity
- brings complexity in business system

Ingest Solutions - database operations
Snapshot
- data in the database is constantly changing, so the snapshot is already out-of-date by the time it’s loaded
- even if you take a snapshot once a day, you still have one-day-old data in the downstream system
- on a large database those snapshots and bulk loads can become very expensive
Data offload
- brings operational complexity
- is inability to meet low-latency requirements
- can’t handle delete operations
Ingest Solutions - capture data change
process only “diff” of changes
- write all your data to only one primary DB;
- extract two things from that database:
- a consistent snapshot and
- a real-time stream of changes
Benefits:
- decouple with business system
- get a latency of less than a second
- stream is ordering of writes, less race conditions
- pull strategy is robust to data corruption (log replaying)
- support as many variant data consumers as required

Ingest Solutions - wrapup
Considering data application under the picture of business application, we will focus on the ‘capture changes to data’ components.

Open Source for Postgres to Kafka
Sqoop
can only take full snapshots of a database, and not capture an ongoing stream of changes. Also, transactional consistency of its snapshots is not wells supported (Apache).
pg_kafka
is a Kafka producer client in a Postgres function, so we could potentially produce to Kafka from a trigger. (MIT license)
bottledwater-pg
is a change data capture (CDC) specifically from PostgreSQL into Kafka (Apache License 2.0, from confluent inc.)
debezium-pg
is a change data capture for a variety of databases (Apache License 2.0, from redhat)

Debezium for Postgres is comparatively better.
Debezium for Postgres Architecture
debezium/postgres-decoderbufs
- manually build the output plugin
- change PG configuration, preload the lib file and restart PG service
debezium/debezium
- compile and package the dependent jar files
Kafka connect
- deploy distributed kafka connect service
- start a debezium connector in Kafka connect
HBase connect
- development work: implement a hbase connect for PG CDC events
- Start a hbase connector in Kafka connect
Spark streaming
- development work: implement data process functions atop Spark streaming

Considerations
Reliability
For example
- be aware of data source exception or source relocation, and automatically/manually restart data capture tasks or redirect data source;
- monitor data quality and latency;
Scalability
- be aware of data source load pressure, and automatically/manually scale out data capture tasks;
Maintainability
- GUI for system monitoring, data quality check, latency statistics etc.;
- GUI for configuring data capture task scale out
Other CDC solutions
Databus (linkedIn): no native support for PG
Wormhole (facebook): not opensource
Sherpa (yahoo!) : not opensource
BottledWater (confluent): postgres Only (NOT maintained any more!!)
Maxwell: mysql Only
Debezium (redhat): good
Mongoriver: only for MongiDB
GoldenGate (Oracle): for Oracle and mysql, free but not opensource
Canal & otter (alibaba): for mysql world replication
Debezium for PostgreSQL to Kafka的更多相关文章
- kafka connect rest api
1. 获取 Connect Worker 信息curl -s http://127.0.0.1:8083/ | jq lenmom@M1701:~/workspace/software/kafka_2 ...
- debezium关于cdc的使用(上)
博文原址:debezium关于cdc的使用(上) 简介 debezium是一个为了捕获数据变更(cdc)的开源的分布式平台.启动并指向数据库,当其他应用对此数据库执行inserts.updates.d ...
- 基于Apache Hudi和Debezium构建CDC入湖管道
从 Hudi v0.10.0 开始,我们很高兴地宣布推出适用于 Deltastreamer 的 Debezium 源,它提供从 Postgres 和 MySQL 数据库到数据湖的变更捕获数据 (CDC ...
- 几篇关于MySQL数据同步到Elasticsearch的文章---第一篇:Debezium实现Mysql到Elasticsearch高效实时同步
文章转载自: https://mp.weixin.qq.com/s?__biz=MzI2NDY1MTA3OQ==&mid=2247484358&idx=1&sn=3a78347 ...
- Build an ETL Pipeline With Kafka Connect via JDBC Connectors
This article is an in-depth tutorial for using Kafka to move data from PostgreSQL to Hadoop HDFS via ...
- Kafka设计解析(八)- Exactly Once语义与事务机制原理
原创文章,首发自作者个人博客,转载请务必将下面这段话置于文章开头处. 本文转发自技术世界,原文链接 http://www.jasongj.com/kafka/transaction/ 写在前面的话 本 ...
- Kafka设计解析(八)Exactly Once语义与事务机制原理
转载自 技术世界,原文链接 Kafka设计解析(八)- Exactly Once语义与事务机制原理 本文介绍了Kafka实现事务性的几个阶段——正好一次语义与原子操作.之后详细分析了Kafka事务机制 ...
- pg 资料大全1
https://github.com/ty4z2008/Qix/blob/master/pg.md?from=timeline&isappinstalled=0 PostgreSQL(数据库) ...
- Awesome Go精选的Go框架,库和软件的精选清单.A curated list of awesome Go frameworks, libraries and software
Awesome Go financial support to Awesome Go A curated list of awesome Go frameworks, libraries a ...
随机推荐
- InnoDB FULLTEXT
1.概要 InnoDB引擎对FULLTEXT索引的支持是MySQL5.6新引入的特性,之前只有MyISAM引擎支持FULLTEXT索引.对于FULLTEXT索引的内容可以使用MATCH()…AGAIN ...
- django1.8模板位置的设置setting.py
大多数django教程比较老,给出的template的设置方案为: 更改工程下的setting.py文件, TEMPLATE_DIRS = ( os.path.join( APP_DIR, ' ...
- Mybatis中的N+1问题与延迟加载
0.什么是N+1问题? 在查询中一下子取出所有属性,就会使数据库多执行几条毫无意义的SQL .实际中不需要把所有信息都加载进来,因为有些信息并不常用,加载它们会多执行几条毫无用处的 SQL,导致数据库 ...
- Spring依赖注入:注解注入
注解注入顾名思义就是通过注解来实现注入, Spring和注入相关的常见注解有Autowired.Resource.Qualifier.Service.Controller.Repository.Com ...
- 最短路径Dijkstra算法(邻接矩阵)
Dijkstra算法的原理: 从某个源点到其余各顶点的最短路径,即单源点最短路径(仅适合非负权值图).单源点最短路径是指:给定带权有向图G和源点v,求从v到G中其余各顶点的最短路径.迪杰斯特拉(Dij ...
- win7卸载打印机驱动
无法删除的话停止Print Spooler服务 删除PRINTERS文件夹下面的文件 C:\Windows\System32\spool\PRINTERS目录下所有的文件,重新启动服务:print s ...
- OpenCV(图像处理)—访问像素的三种方法
方法一:用指针访问像素 #include <opencv2/opencv.hpp> #include <opencv2/core/core.hpp> #include < ...
- vsftp 500 OOPS: cannot change directory:/home/xyp
1.在linux终端下输入: > setsebool ftpd_disable_trans 1 (*如果出现Could not change active booleans: Invalid b ...
- 在探http请求
参考:https://itbilu.com/other/relate/Ny2IWC3N-.html Cookie和Session都是为了解决HTTP协议的无状态问题,存储HTTP通讯中客户端与服务器之 ...
- UI设计是青春饭?今天告诉你真相!
最近有学员来问,“我想转行学习UI设计,但是听很多人说,UI设计是吃青春饭的,互联网公司是不是只选择年轻的血液而淘汰年纪大的?”今天,我来统一回答一下. UI设计是不是青春饭? 我们先来思考一个问题: ...