Traveling Salesman among Aerial Cities 旅行商(TSP)问题
题目链接:点我
问题:
给你n个点的坐标(x,y,z)。从点(a,b,c) 到另一个点 (p,q,r) 的距离是:|p−a|+|q−b|+max(0,r−c)
问你从一个点为起点,找一条能经过其他所有点的路径,最后回到起点(除了起点可以经过两次,其他所有点只能经过一次
问你这个环的长度最小是多少
问题求解:
假设从顶点s出发,令d(i, V)表示从顶点i出发经过V(是一个点的集合)中各个顶点一次且仅一次,最后回到出发点s的最短路径长度。
我们使用dist(i,j)表示从i点到j点的距离
1、当V是空集的时候,d(i,V)就表示直接从i点回到了s点,也就是dist(i,s)
2、当V不是空集的时候,那么就是对子问题的最优求解。你必须在V这个城市集合中,尝试每一个,并求出最优解。
d(i,V)=min(d(k,V-{k})+dist(i,k)) (V-{k}表示在V集合中把k点去掉
这也就是dp方程了
复杂度:
2n*n2
代码:
#include <cstdio>
#include <algorithm>
#include <iostream>
#include <vector>
#include <map>
#include <queue>
#include <set>
#include <ctime>
#include <cstring>
#include <cstdlib>
#include <cmath>
#define min(a,b) ((a>b)?b:a)
using namespace std;
typedef long long ll;
const int maxn = 25 + 10;
const long long ll_INF=0x3f3f3f3f3f3f3f3fLL;
const long long INF=0x3f3f3f3f;
int n,w[maxn][maxn],dp[maxn][1<<20],m;
vector<int>path;
//dp[i][j]保存顶点i到状态j最后回到起始点的最小距离
struct Point
{
int x,y,z;
} point[maxn];
int dist(int i,int j)
{
return abs(point[i].x-point[j].x)+abs(point[i].y-point[j].y)+max(0,point[j].z-point[i].z);
}
void TSP()
{
//我们把起点看作0号节点
for(int i=0; i<n; ++i)
{
//初始化dp数组
dp[i][0]=w[i][0];
}
//按照dp方程求解
for(int j=1; j<m; ++j) //状态
{
for(int i=0; i<n; ++i)
{
dp[i][j]=INF;
if( ((j >> (i-1)) & 1) == 1) //这样判断而不是j>>i这样判断,是因为可以直接得到答案就在dp[n][m-1]
{
//要不然对于dp[n][m-1]的状态肯定每一位都是1,如果换成上面那个判断,那么这个状态的值就是
continue; //INF(因为continue掉了
}
for(int k=1; k<n; ++k)
{
if( ((j >> (k-1)) & 1) == 0)
{
continue;
}
if( dp[i][j] > w[i][k] + dp[k][j^(1<<(k-1))])
{
dp[i][j] = w[i][k] + dp[k][j^(1<<(k-1))];
}
}
}
}
}
//判断结点是否都以访问,不包括0号结点
bool isVisited(bool visited[])
{
for(int i = 1 ; i<n ; i++)
{
if(visited[i] == false)
{
return false;
}
}
return true;
}
//获取最优路径,保存在path中,根据动态规划公式反向找出最短路径结点
void getPath()
{
//标记访问数组
bool visited[n] = {false};
//前驱节点编号
int pioneer = 0,minn = INF, S = m - 1,temp ;
//把起点结点编号加入容器
path.push_back(0); while(!isVisited(visited))
{
for(int i=1; i<n; i++)
{
if(visited[i] == false && (S&(1<<(i-1))) != 0)
{
if(minn > w[i][pioneer] + dp[i][(S^(1<<(i-1)))])
{
minn = w[i][pioneer] + dp[i][(S^(1<<(i-1)))] ;
temp = i;
}
}
}
pioneer = temp;
path.push_back(pioneer);
visited[pioneer] = true;
S = S ^ (1<<(pioneer - 1));
minn = INF;
}
}
//输出路径
void printPath()
{
cout<<"最小路径为:";
vector<int>::iterator it = path.begin();
for(it ; it != path.end(); it++)
{
cout<<*it<<"--->";
}
//单独输出起点编号
cout<<0;
}
int main()
{
//printf("%d\n",(3>>(-1))); 6
scanf("%d",&n);
m=(1<<(n-1));
for(int i=0; i<n; ++i)
{
scanf("%d%d%d",&point[i].x,&point[i].y,&point[i].z);
}
for(int i=0; i<n; ++i)
{
for(int j=0; j<n; ++j)
{
if(i==j) w[i][j]=0;
else
w[i][j]=dist(i,j);
}
}
TSP();
printf("%d\n",dp[0][m-1]);
//下面用于输出路径
// getPath();
// printPath();
return 0;
}
Traveling Salesman among Aerial Cities 旅行商(TSP)问题的更多相关文章
- 遗传算法的简单应用-巡回旅行商(TSP)问题的求解
上篇我们用遗传算法求解了方程,其中用到的编码方式是二进制的编码,实现起来相对简单很多, 就连交配和变异等操作也是比较简单,但是对于TSP问题,就稍微复杂一点,需要有一定的策略, 才能较好的实现. 这次 ...
- 二进制状态压缩dp(旅行商TSP)POJ3311
http://poj.org/problem?id=3311 Hie with the Pie Time Limit: 2000MS Memory Limit: 65536K Total Subm ...
- Hamilton回路 旅行商TSP问题 /// dp oj1964
题目大意: 给出一个n个顶点的无向图,请寻找一条从顶点0出发,遍历其余顶点一次且仅一次.最后回到顶点0的回路——即Hamilton回路. Input 多测试用例.每个测试用例: 第一行,两个正整数 n ...
- 【C#代码实战】群蚁算法理论与实践全攻略——旅行商等路径优化问题的新方法
若干年前读研的时候,学院有一个教授,专门做群蚁算法的,很厉害,偶尔了解了一点点.感觉也是生物智能的一个体现,和遗传算法.神经网络有异曲同工之妙.只不过当时没有实际需求学习,所以没去研究.最近有一个这样 ...
- ACM/ICPC 之 数据结构-邻接表+DP+队列+拓扑排序(TSH OJ-旅行商TSP)
做这道题感觉异常激动,因为在下第一次接触拓扑排序啊= =,而且看了看解释,猛然发现此题可以用DP优化,然后一次A掉所有样例,整个人激动坏了,哇咔咔咔咔咔咔咔~ 咔咔~哎呀,笑岔了- -|| 旅行商(T ...
- 旅行商问题(Traveling Salesman Problem,TSP)的+Leapms线性规划模型及c++调用
知识点 旅行商问题的线性规划模型旅行商问题的+Leapms模型及CPLEX求解C++调用+Leapms 旅行商问题 旅行商问题是一个重要的NP-难问题.一个旅行商人目前在城市1,他必须对其余n-1个城 ...
- 【智能算法】用模拟退火(SA, Simulated Annealing)算法解决旅行商问题 (TSP, Traveling Salesman Problem)
喜欢的话可以扫码关注我们的公众号哦,更多精彩尽在微信公众号[程序猿声] 文章声明 此文章部分资料和代码整合自网上,来源太多已经无法查明出处,如侵犯您的权利,请联系我删除. 01 什么是旅行商问题(TS ...
- 洛谷【P1523】旅行商的背包(算法导论 15-1) 题解
P1523 旅行商简化版 题目背景 欧几里德旅行商\((Euclidean Traveling Salesman)\)问题也就是货郎担问题一直是困扰全世界数学家.计算机学家的著名问题.现有的算法都没有 ...
- Speeding Up The Traveling Salesman Using Dynamic Programming
Copied From:https://medium.com/basecs/speeding-up-the-traveling-salesman-using-dynamic-programming-b ...
随机推荐
- 几幅图,拿下 HTTPS
我很早之前写过一篇关于 HTTP 和 HTTPS 的文章,但对于 HTTPS 介绍还不够详细,只讲了比较基础的部分,所以这次我们再来深入一下 HTTPS,用实战抓包的方式,带大家再来窥探一次 HTTP ...
- 微信小程序API交互的自定义封装
目录 1,起因 2,优化成果 3,实现思路 4,完整代码 1,起因 哪天,正在蚂蚁森林疯狂偷能量的我被boss叫过去,告知我司要做一个线上直播公开课功能的微信小程序,博主第一次写小程序,复习了下文档, ...
- iconv函数报错 Detected an illegal character in input string
近日使用php代码导出文件为excel,一直乱码.导出修改编码都无效,最后发现,是需要修改php导出代码本身的编码.首先用记事本打开php代码,另存为,选择ANSI格式.然后打开iconv函数这个ph ...
- 【ASM】asm从共享磁盘复制到本地磁盘中
将ASM里面的文件copy到文件系统 数据文件存放在ASM里面查看不是很直观,有时候需要把文件从ASM里面copy到文件系统.我记录了一下两种方法,还有一种用AMDU,ODU也可以实现 1. 直接在a ...
- 【ASM】查看ASM磁盘组剩余容量和总容量
col total_size for a10; col free_size for a20; select name,total_mb/1024 || 'G' as total_size , free ...
- qt for webassembly环境搭建图文教程
一.前言 从Qt5.14开始,官方的在线安装提供了qt for webassembly构建套件,这对很多小白来说绝对是个好消息,也绝对是个好东西,好消息是不用再去交叉编译自己生成qt for weba ...
- C#从入门到放弃治疗一:初探C#世界
C#是一款高级的面向对象语言,运行于.NET framework之上的高级程序设计语言.其语言规范和,语法和java有着惊人的类似之处.所以如果你在学习C#之前有着java的基础,你将快速地入门.当然 ...
- 常用的hadoop和yarn的端口总结
节点 默认端口 用途说明 HDFS DataNode 50010 datanode服务端口,用于数据传输 50075 http服务的端口 50475 https服务的端口 50020 ipc服务的端口 ...
- Uber如何解决2000多个微服务带来的复杂性问题?
Uber如何解决2000多个微服务带来的复杂性问题? Adam Gluck 架构头条 2020-10-29 https://mp.weixin.qq.com/s/N7fVDZVm8uC9wVvd9DQ ...
- Pusher Channels Protocol | Pusher docs https://pusher.com/docs/channels/library_auth_reference/pusher-websockets-protocol
Pusher Channels Protocol | Pusher docs https://pusher.com/docs/channels/library_auth_reference/pushe ...