题意:有N个相同的球,M个不同的盒子,每个盒子最多放K个球。请计算将这N个球全部放入盒子中的方案数模1000007后的结果。

解法:f[i][j]表示i个盒子里放j个球的方案数。

1.得到3重循环的坐法,枚举第i个盒子里放k个球——f[i][j]=sum( f[i-1][j-k~j] )

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 5010
7 #define Mod 1000007
8
9 int f[2][N];
10
11 int mmin(int x,int y) {return x<y?x:y;}
12 int main()
13 {
14 int n,m,kk;
15 scanf("%d%d%d",&n,&m,&kk);
16 f[0][0]=1;
17 int u=1;
18 for (int i=1;i<=m;i++)
19 {
20 for (int j=1;j<=n;j++)
21 {
22 f[u][j]=0;
23 for (int k=1;k<=mmin(j,kk);k++)
24 f[u][j]=(f[u][j]+f[1-u][j-k])%Mod;
25 }
26 u=1-u;
27 }
28 printf("%d\n",f[1-u][n]);
29 return 0;
30 }

1 滚动数组

2.用上面的式子利用前缀和的概念(自己稍微画个条形图就好理解很多了) 或 f[i][j]与f[i][j-1]的递推式相减可化成这个式子:f[i][j]=f[i-1][j]+f[i][j-1]-f[i-1][j-k-1];

注意——初始化;式子不要粗心写错,否则调试得都是泪啊~ T_T

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 5010
7 #define mod 1000007
8
9 int f[N][N];
10 int mmin(int x,int y) {return x<y?x:y;}
11 int main()
12 {
13 int n,m,kk;
14 scanf("%d%d%d",&n,&m,&kk);
15 for (int j=0;j<=kk&&j<=n;j++)
16 f[1][j]=1;
17 for (int i=2;i<=m;i++)
18 {
19 f[i][0]=1;
20 for (int j=1;j<=n;j++)
21 {
22 f[i][j]=(f[i-1][j]+f[i][j-1])%mod;//f[i-1][j]
23 if (j>kk) f[i][j]=(f[i][j]+mod-f[i-1][j-kk-1])%mod;
24 }
25 }
26 printf("%d\n",f[m][n]);
27 return 0;
28 }

2

【noi 2.6_9285】盒子与小球之三(DP)的更多相关文章

  1. NOI题库--盒子和小球系列 By cellur925

    题目传送门 盒子和小球之二:N个有差别的盒子(1<=N<=20).你有A个红球和B个蓝球.0 <= A <= 15, 0 <= B <= 15.球除了颜色没有任何区 ...

  2. 【noi 2.6_9284】盒子与小球之二(DP)

    题意:有N个有差别的盒子和分别为A个和B个的红球和蓝球,盒子内可空,问方案数. 解法:我自己打的直接用了求组合C的公式,把红球和蓝球分开看.对于红球,在N个盒子可放任意个数,便相当于除了A个红球还有N ...

  3. 【BZOJ2037】[Sdoi2008]Sue的小球 区间DP+费用提前

    [BZOJ2037][Sdoi2008]Sue的小球 Description Sue和Sandy最近迷上了一个电脑游戏,这个游戏的故事发在美丽神秘并且充满刺激的大海上,Sue有一支轻便小巧的小船.然而 ...

  4. NOI.AC#2139-选择【斜率优化dp,树状数组】

    正题 题目链接:http://noi.ac/problem/2139 题目大意 给出\(n\)个数字的序列\(a_i\).然后选出一个不降子序列最大化子序列的\(a_i\)和减去没有任何一个数被选中的 ...

  5. BZOJ2037: [Sdoi2008]Sue的小球(区间DP)

    Time Limit: 10 Sec  Memory Limit: 64 MBSubmit: 869  Solved: 483[Submit][Status][Discuss] Description ...

  6. 【LOJ511】[LibreOJ NOI Round #1]验题(动态DP)

    我这道题写了整!整!三!天! 我要一定要写这篇博客来表达我复!杂!的!心!情! 题目 LOJ511 官方题解(这个题解似乎不是很详细,我膜 std 才看懂的) 调这道题验证了我校某人的一句话:调题是一 ...

  7. 6.28 NOI模拟赛 好题 状压dp 随机化

    算是一道比较新颖的题目 尽管好像是两年前的省选模拟赛题目.. 对于20%的分数 可以进行爆搜,对于另外20%的数据 因为k很小所以考虑上状压dp. 观察最后答案是一个连通块 从而可以发现这个连通块必然 ...

  8. P6189 [NOI Online #1 入门组] 跑步 (DP/根号分治)

    (才了解到根号分治这样的妙方法......) 将每个数当成一种物品,最终要凑成n,这就是一个完全背包问题,复杂度O(n2),可以得80分(在考场上貌似足够了......) 1 #include < ...

  9. bzoj1867: [Noi1999]钉子和小球(DP)

    一眼题...输出分数格式才是这题的难点QAQ 学习了分数结构体... #include<iostream> #include<cstring> #include<cstd ...

随机推荐

  1. 【JS学习】String基础方法

    前言:本博客系列为学习后盾人js教程过程中的记录与产出,如果对你有帮助,欢迎关注,点赞,分享.不足之处也欢迎指正,作者会积极思考与改正. 目录 定义: 字符串的连接: 标签模板的使用: 字符串的基本方 ...

  2. MySQL where 条件字句查询

    where 条件字句 搜索条件可由一个或多个逻辑表达式组成 , 结果一般为布尔值 逻辑运算符 运算符 语法 描述 and && a and b a && b 逻辑与 两 ...

  3. 【IMPDP】ORA-31655

    出现ora-31655错误的情况是因为不是同一个schema,导致的问题产生 解决的方法; 在导入语句最后添加上remap_schema=old:new 着old是原schema,也就是导出的用户名, ...

  4. SAP 修改表和表中数据

    平时修改表中数据的方式有一下几种: 1.一般就是通过SE11或者是SE16进去,找到那条记录,然后将模式变成EDIT,然后修改保存. 2.通过SQL语句在程序中实现数据库表的修改操作 3.通过SE16 ...

  5. Vijos-P1103题解【线段树】

    本文为原创,转载请注明:http://www.cnblogs.com/kylewilson/ 题目出处: https://www.vijos.org/p/1103 题目描述: 一条马路从数轴0到L,每 ...

  6. uniapp根据登录用户的角色动态的改变tabBar的数量和内容

    此文章借鉴于https://blog.csdn.net/fuyuumiai/article/details/109746357,在此基础上修改小部分内容,适用于我这种uniapp小白 介绍: 现在我们 ...

  7. 無法直接連接互聯網,需要使用代理時(Scrapy)

    在windows系統中,如果無法直接連接互聯網,需要使用代理時該怎麽做呢? 1. 在powershell中設置proxy 背景:使用公司電腦,無法直接訪問互聯網,想要訪問互聯網就得使用代理,但是在控制 ...

  8. https://github.com/golang/crypto/blob/master/bcrypt/bcrypt.go

    https://github.com/golang/crypto/blob/master/bcrypt/bcrypt.go

  9. The Go Blog Getting to Go: The Journey of Go's Garbage Collector

    Getting to Go: The Journey of Go's Garbage Collector https://blog.golang.org/ismmkeynote

  10. 流量染色与gRPC服务托管 微服务协作开发、灰度发布之流量染色 灰度发布与流量染色

    大规模微服务场景下灰度发布与流量染色实践 https://mp.weixin.qq.com/s/UBoRKt3l91ffPagtjExmYw [go-micro]微服务协作开发.灰度发布之流量染色 - ...