【noi 2.6_9277】Logs Stacking堆木头(DP)
题意:给出在最底层的木头的个数,问有多少种堆放木头的方式。要求木头必须互相挨着在一起。
解法:f[i]表示最底层i个木头的堆放木头的方式。注意递推的思想!
只需知道上一层堆放0~i-1个(即最底层堆放i个木头)的方式数就可以利用加法原理得到f[i]。
方法一、用前缀和求解。
由于要求木头挨在一起,上层为1个时,相应有i-1个位置可放;2个时,相应为i-2。即:f[i]=f[0]+f[1]*(i-1)+f[2]*(i-2)...+f[i-1] f[i-1]=f[0]+f[1]*(i-2)+f[2]+(i-3)... +f[i-2] ==》 f[i]=f[i-1]+f[1]+f[2]+...+f[i-1]=f[i-1]+sum[i-1](sum[i]表示从f[1]到f[i]的和)
1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 200000
7 #define mod 100000
8 int sum[N],f[N];
9
10 int main()
11 {
12 int T,n;
13 scanf("%d",&T);
14 f[0]=1,sum[0]=0;//sum[i]:f[1~i]
15 for (int i=1;i<=N;i++)
16 {
17 f[i]=(f[i-1]+sum[i-1])%mod;
18 sum[i]=(sum[i-1]+f[i])%mod;
19 }
20 while (T--)
21 {
22 scanf("%d",&n);
23 printf("%d\n",f[n]);
24 }
25 return 0;
26 }
1
方法二、用斐波拉契数列。
由上面的式子可推出——f[i]=f[i-1]+(f[i-1]-f[i-2])+f[i-1]=3f[i-1]-f[i-2] 这就是斐波拉契数列的奇数项通式,而推导我不知道,但还是能发现i=1~...时,f[]=1,2,5,12,34.. 而斐波拉契数列为1,1,2,3,5,8,13,21,34...奇数项重合的。
【noi 2.6_9277】Logs Stacking堆木头(DP)的更多相关文章
- 【OpenJudge9277】【递推】Logs Stacking堆木头
Logs Stacking堆木头 总时间限制: 1000ms 内存限制: 131072kB [描述] Daxinganling produces a lot of timber. Before loa ...
- 【Openjudge 9277 Logs Stacking堆木头】 题解
题目链接:http://noi.openjudge.cn/ch0206/9277/ ... #include <algorithm> #include <iostream> # ...
- 基于HTML5堆木头游戏
今天要来分享一款很经典的HTML5游戏——堆木头游戏,这款游戏的玩法是将木头堆积起来,多出的部分将被切除,直到下一根木头无法堆放为止.这款HTML5游戏的难点在于待堆放的木头是移动的,因此需要你很好的 ...
- UVa 103 - Stacking Boxes(dp求解)
题目来源:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&category=3&pa ...
- 【Luogu】P2254瑰丽华尔兹(堆优化DP)
题目链接 我也不知道为什么脑子一抽就想了个堆优化……然后贼慢…… 因为上午听不懂wys的电音专场(快速傅立叶变换),然后就做了这么一道题. 首先朴素DP很sb都能秒出.就是枚举时刻.位置(两维)然后转 ...
- 征途堆积出友情的永恒「堆优化dp」
直接写题解: 很简单的dp暴力转移式子:f[i]=MAX{f[j]+max(tax[j],sum[i]-sum[j])} 观察式子,只有一个变量sum[i]; 而其他都为定量; 则考虑维护 两个定量: ...
- NOI.AC#2139-选择【斜率优化dp,树状数组】
正题 题目链接:http://noi.ac/problem/2139 题目大意 给出\(n\)个数字的序列\(a_i\).然后选出一个不降子序列最大化子序列的\(a_i\)和减去没有任何一个数被选中的 ...
- 洛谷P1725 琪露诺 (单调队列/堆优化DP)
显然的DP题..... 对于位置i,它由i-r~i-l的位置转移过来,容易得到方程 dp[i]=dp[i]+max(dp[i−r],...,dp[i−l]). 第一种:n2的暴力,只能拿部分分. 1 ...
- BZOJ 2809 [Apio2012]dispatching(斜堆+树形DP)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=2809 [题目大意] 给出一棵树,求出每个点有个权值,和一个乘算值,请选取一棵子树, 并 ...
随机推荐
- C#处理医学图像(二):基于Hessian矩阵的医学图像增强与窗宽窗位
根据本系列教程文章上一篇说到,在完成C++和Opencv对Hessian矩阵滤波算法的实现和封装后, 再由C#调用C++ 的DLL,(参考:C#处理医学图像(一):基于Hessian矩阵的血管肺纹理骨 ...
- nginx: [emerg] bind() to 0.0.0.0:80 failed (10013:
问题出现 今天在win10安装nginx时候,启动nginx.exe时在dos窗口出现了这个错误,特此记录一下. 解决方法 上面报错信息的意思大概是:0.0.0:80地址访问不被允许.可能是80端口号 ...
- python_元组(tuple)
#tuple(),元组不可以修改,不能对其进行增加或删除操作,元组是有序的 #1.定义 tu_1 = () #定义一个空元组 tu_2 = (1,2,'alex',[3,4],(5,6,7),True ...
- python学习笔记 | 国内常用源镜像地址
各镜像列表 清华:https://pypi.tuna.tsinghua.edu.cn/simple 阿里云:http://mirrors.aliyun.com/pypi/simple/ 中国科技大学 ...
- Linux 用户操作之用户管理 (用户增删改操作)
目录 添加用户 删除用户 修改用户 切换用户 配置用户密码 查看配置文件 cat /etc/pwsswd 添加用户 可选项 -c comment 指定一段注释性描述. -d 目录 指定用户主目录,如果 ...
- 【排序基础】5、插入排序法 - Insertion Sort
插入排序法 - Insertion Sort 文章目录 插入排序法 - Insertion Sort 插入排序设计思想 插入排序代码实现 操作:插入排序与选择排序的比较 简单记录-bobo老师的玩转算 ...
- 【Linux】CentOS8 初体验
一.部署CentOS8虚拟机 1.下载Centos8镜像 下载地址: https://www.centos.org/download/ 可以选择国内的下载源,比较快,这里推荐清华的和阿里的 2.下载完 ...
- Java并发编程常识
这是why的第 85 篇原创文章 写中间件经常要做两件事: 1.延迟加载,在内存缓存已加载项. 2.统计调用次数,拦截并发量. 就这么个小功能,团队里的人十有八九写错. 上面这句话不是我说的,是梁飞在 ...
- Let’s Encrypt/Certbot移除/remove/revoke不需要的域名证书
1.首先确认你的证书不再需要,如果有必要,请执行下面的命令进行备份 cp /etc/letsencrypt/ /etc/letsencrypt.backup -r 2.撤销证书然后删除证书 [root ...
- (09)-Python3之--类的三大特性(封装、继承、多态)
1.封装 封装,就是只能在类的内部访问,外部访问属性或方法会报异常,python中的封装很简单,只要在属性前或者方法名前加上两个下划线就可以,如self.__name,def __eat(self)这 ...