题意:已知2只青蛙的起始位置 a,b 和跳跃一次的距离 m,n,现在它们沿着一条长度为 l 的纬线(圈)向相同方向跳跃。问它们何时能相遇?(好有聊的青蛙 (΄◞ิ౪◟ิ‵) *)永不相遇就输出"Impossible"。(蠢得可怜 -_-!)

解法:用拓展欧几里德求同余方程的最小正整数解。(a+mx)-(b+nx)=k*l (k表示圈数) → (m-n)x=k*l+b-a → (m-n)x=b-a(mod l)。当然其实=(b-a)%l 更准确,但反正都是模,也没有关系啦。于是就像上题一样求了。

P.S.代码中有一处加了%p,和没加,时间差别还挺大的......但上一题又不怕......*( ̄_ ̄)*

 1 #include<cstdio>
2 #include<cstdlib>
3 #include<cstring>
4 #include<iostream>
5 using namespace std;
6 #define N 2000000000
7 typedef long long LL;
8
9 LL mabs(LL x) {return x>0?x:-x;}
10 LL exgcd(LL a,LL b,LL& x,LL& y)
11 {
12 if (!b) {x=1,y=0; return a;}
13 LL tx,ty,d;
14 d=exgcd(b,a%b,tx,ty);
15 x=ty,y=tx-(a/b)*ty;
16 return d;
17 }
18 int main()
19 {
20 LL aa,bb,m,n,l;
21 scanf("%I64d%I64d%I64d%I64d%I64d",&aa,&bb,&m,&n,&l);
22 LL a,b,c,x,y,p;
23 a=m-n,b=l,c=bb-aa,p=l;
24 LL d=exgcd(a,b,x,y);
25 if (c%d!=0) printf("Impossible\n");
26 else
27 {
28 x=(x*(c/d))%p;//厉害了!删了%p,就从0ms变到16ms了
29 LL t=mabs(b/d);
30 x=(x%t+t)%t;
31 printf("%I64d\n",x);
32 }
33 return 0;
34 }

【poj 1061】青蛙的约会(数论--拓展欧几里德 求解同余方程)的更多相关文章

  1. POJ 1061青蛙的约会(拓展欧几里德算法)

    题目链接: 传送门 青蛙的约会 Time Limit: 1000MS     Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...

  2. ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德

    POJ 1061 青蛙的约会 Time Limit:1000MS     Memory Limit:10000KB     64bit IO Format:%lld & %llu  Descr ...

  3. 【poj 2891】Strange Way to Express Integers(数论--拓展欧几里德 求解同余方程组 模版题)

    题意:Elina看一本刘汝佳的书(O_O*),里面介绍了一种奇怪的方法表示一个非负整数 m .也就是有 k 对 ( ai , ri ) 可以这样表示--m%ai=ri.问 m 的最小值. 解法:拓展欧 ...

  4. 【hdu 3579】Hello Kiki(数论--拓展欧几里德 求解同余方程组)

    题意:Kiki 有 X 个硬币,已知 N 组这样的信息:X%x=Ai , X/x=Mi (x未知).问满足这些条件的最小的硬币数,也就是最小的正整数 X. 解法:转化一下题意就是 拓展欧几里德求解同余 ...

  5. POJ 1061 青蛙的约会(拓展欧几里得求同余方程,解ax+by=c)

    青蛙的约会 Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 122871   Accepted: 26147 Descript ...

  6. 【poj 2115】C Looooops(数论--拓展欧几里德 求解同余方程 模版题)

    题意:有一个在k位无符号整数下的模型:for (variable = A; variable != B; variable += C)  statement; 问循环的次数,若"永不停息&q ...

  7. 【hdu 1573】X问题(数论--拓展欧几里德 求解同余方程组的个数)

    题目:求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2], -, X mod a[i] = b[i] ...

  8. POJ 1061 青蛙的约会(拓展欧几里得算法求解模线性方程组详解)

    题目链接: BZOJ: https://www.lydsy.com/JudgeOnline/problem.php?id=1477 POJ: https://cn.vjudge.net/problem ...

  9. POJ 1061 青蛙的约会【扩展欧几里德】

    设跳的次数为t 根据题意可得以下公式:(x+mt)%L=(y+nt)%L 变形得 (x+mt)-(y+nt)=kL (n-m)t+kL=x-y 令a=(n-m),b=L,c=x-y 得 at+bk=c ...

随机推荐

  1. springboot集成轻量级权限认证框架sa-token

    sa-token是什么? sa-token是一个JavaWeb轻量级权限认证框架,主要解决项目中登录认证.权限认证.Session会话等一系列由此衍生的权限相关业务.相比于其他安全性框架较容易上手. ...

  2. .netcore 急速接入第三方登录,不看后悔

    新年新气象,趁着新年的喜庆,肝了十来天,终于发了第一版,希望大家喜欢. 如果有不喜欢看文字的童鞋,可以直接看下面的地址体验一下: https://oauthlogin.net/ 前言 此次带来得这个小 ...

  3. 剑指offer 面试题6:从尾到头打印链表

    题目描述 输入一个链表,按链表值从尾到头的顺序返回一个ArrayList. 编程思想 从前往后遍历,将值存入栈中,然后打印栈中内容即可. 编程实现 /** * struct ListNode { * ...

  4. 支持向量机(SVM)原理详解

    SVM简介 支持向量机(support vector machines, SVM)是一种二分类模型,它的基本模型是定义在特征空间上的间隔最大的线性分类器,间隔最大使它有别于感知机:SVM还包括核技巧, ...

  5. 爬虫-urllib3模块的使用

    urllib3是一个功能强大,对SAP健全的 HTTP客户端,许多Python生态系统已经使用了urllib3. 一.安装 sudo pips install urllib3 二.创建PoolMana ...

  6. spring cloud gateway 日志打印

    从api请求中获取访问的具体信息,是一个很常见的功能,这几天在研究springcloud,使用到了其中的gateway,刚好将研究的过程结果都记录下来 0. Version <parent> ...

  7. docker logs 查看容器日志操作

    查看日志 官方文档:https://docs.docker.com/engine/reference/commandline/logs/ # 查看指定数量的实时日志 # docker logs -tf ...

  8. bootstrap 后端模板

    Twitter Bootstrap 框架已经广为人知,用于加快网站,应用程序或主题的界面开发,并被公认为是迄今对于 Web 开发的最有实质性帮助的工具之一.在此之前的,各种各样的界面库伴随着高昂的维护 ...

  9. HTML基础复习1

    网页:HTML(超文本标记语言) 网页分为静态网页和动态网页,区别:动态网页中可以加入脚本代码,还可以动态的引入数据库中的信息. HTML的结构 <html> <head>头信 ...

  10. DHCP中继配置

    (三台都需要关闭防火墙 前两台需要安装dhcp ) 第一台linux(vmnet2)(192.168.1.1) vim /etc/sysconfig/network-scripts/ifcfg-ens ...