The Node.js Event Loop, Timers, and process.nextTick() | Node.js https://nodejs.org/uk/docs/guides/event-loop-timers-and-nexttick/

What is the Event Loop?

The event loop is what allows Node.js to perform non-blocking I/O operations — despite the fact that JavaScript is single-threaded — by offloading operations to the system kernel whenever possible.

Since most modern kernels are multi-threaded, they can handle multiple operations executing in the background. When one of these operations completes, the kernel tells Node.js so that the appropriate callback may be added to the poll queue to eventually be executed. We'll explain this in further detail later in this topic.

Event Loop Explained

When Node.js starts, it initializes the event loop, processes the provided input script (or drops into the REPL, which is not covered in this document) which may make async API calls, schedule timers, or call process.nextTick(), then begins processing the event loop.

The following diagram shows a simplified overview of the event loop's order of operations.

   ┌───────────────────────────┐
┌─>│ timers │
│ └─────────────┬─────────────┘
│ ┌─────────────┴─────────────┐
│ │ pending callbacks │
│ └─────────────┬─────────────┘
│ ┌─────────────┴─────────────┐
│ │ idle, prepare │
│ └─────────────┬─────────────┘ ┌───────────────┐
│ ┌─────────────┴─────────────┐ │ incoming: │
│ │ poll │<─────┤ connections, │
│ └─────────────┬─────────────┘ │ data, etc. │
│ ┌─────────────┴─────────────┐ └───────────────┘
│ │ check │
│ └─────────────┬─────────────┘
│ ┌─────────────┴─────────────┐
└──┤ close callbacks │
└───────────────────────────┘

note: each box will be referred to as a "phase" of the event loop.

Each phase has a FIFO queue of callbacks to execute. While each phase is special in its own way, generally, when the event loop enters a given phase, it will perform any operations specific to that phase, then execute callbacks in that phase's queue until the queue has been exhausted or the maximum number of callbacks has executed. When the queue has been exhausted or the callback limit is reached, the event loop will move to the next phase, and so on.

Since any of these operations may schedule more operations and new events processed in the poll phase are queued by the kernel, poll events can be queued while polling events are being processed. As a result, long running callbacks can allow the poll phase to run much longer than a timer's threshold. See the timers and poll sections for more details.

NOTE: There is a slight discrepancy between the Windows and the Unix/Linux implementation, but that's not important for this demonstration. The most important parts are here. There are actually seven or eight steps, but the ones we care about — ones that Node.js actually uses - are those above.

Phases Overview

  • timers: this phase executes callbacks scheduled by setTimeout() and setInterval().
  • pending callbacks: executes I/O callbacks deferred to the next loop iteration.
  • idle, prepare: only used internally.
  • poll: retrieve new I/O events; execute I/O related callbacks (almost all with the exception of close callbacks, the ones scheduled by timers, and setImmediate()); node will block here when appropriate.
  • check: setImmediate() callbacks are invoked here.
  • close callbacks: some close callbacks, e.g. socket.on('close', ...).

Between each run of the event loop, Node.js checks if it is waiting for any asynchronous I/O or timers and shuts down cleanly if there are not any.

Phases in Detail

timers

A timer specifies the threshold after which a provided callback may be executed rather than the exact time a person wants it to be executed. Timers callbacks will run as early as they can be scheduled after the specified amount of time has passed; however, Operating System scheduling or the running of other callbacks may delay them.

Note: Technically, the poll phase controls when timers are executed.

For example, say you schedule a timeout to execute after a 100 ms threshold, then your script starts asynchronously reading a file which takes 95 ms:

const fs = require('fs');

function someAsyncOperation(callback) {
// Assume this takes 95ms to complete
fs.readFile('/path/to/file', callback);
} const timeoutScheduled = Date.now(); setTimeout(() => {
const delay = Date.now() - timeoutScheduled; console.log(`${delay}ms have passed since I was scheduled`);
}, 100); // do someAsyncOperation which takes 95 ms to complete
someAsyncOperation(() => {
const startCallback = Date.now(); // do something that will take 10ms...
while (Date.now() - startCallback < 10) {
// do nothing
}
});

When the event loop enters the poll phase, it has an empty queue (fs.readFile() has not completed), so it will wait for the number of ms remaining until the soonest timer's threshold is reached. While it is waiting 95 ms pass, fs.readFile() finishes reading the file and its callback which takes 10 ms to complete is added to the poll queue and executed. When the callback finishes, there are no more callbacks in the queue, so the event loop will see that the threshold of the soonest timer has been reached then wrap back to the timers phase to execute the timer's callback. In this example, you will see that the total delay between the timer being scheduled and its callback being executed will be 105ms.

Note: To prevent the poll phase from starving the event loop, libuv (the C library that implements the Node.js event loop and all of the asynchronous behaviors of the platform) also has a hard maximum (system dependent) before it stops polling for more events.

pending callbacks

This phase executes callbacks for some system operations such as types of TCP errors. For example if a TCP socket receives ECONNREFUSED when attempting to connect, some *nix systems want to wait to report the error. This will be queued to execute in the pending callbacks phase.

poll

The poll phase has two main functions:

  1. Calculating how long it should block and poll for I/O, then
  2. Processing events in the poll queue.

When the event loop enters the poll phase and there are no timers scheduled, one of two things will happen:

  • If the poll queue is not empty, the event loop will iterate through its queue of callbacks executing them synchronously until either the queue has been exhausted, or the system-dependent hard limit is reached.

  • If the poll queue is empty, one of two more things will happen:

    • If scripts have been scheduled by setImmediate(), the event loop will end the poll phase and continue to the check phase to execute those scheduled scripts.

    • If scripts have not been scheduled by setImmediate(), the event loop will wait for callbacks to be added to the queue, then execute them immediately.

Once the poll queue is empty the event loop will check for timers whose time thresholds have been reached. If one or more timers are ready, the event loop will wrap back to the timers phase to execute those timers' callbacks.

check

This phase allows a person to execute callbacks immediately after the poll phase has completed. If the poll phase becomes idle and scripts have been queued with setImmediate(), the event loop may continue to the check phase rather than waiting.

setImmediate() is actually a special timer that runs in a separate phase of the event loop. It uses a libuv API that schedules callbacks to execute after the poll phase has completed.

Generally, as the code is executed, the event loop will eventually hit the poll phase where it will wait for an incoming connection, request, etc. However, if a callback has been scheduled with setImmediate() and the poll phase becomes idle, it will end and continue to the check phase rather than waiting for poll events.

close callbacks

If a socket or handle is closed abruptly (e.g. socket.destroy()), the 'close' event will be emitted in this phase. Otherwise it will be emitted via process.nextTick().

setImmediate() vs setTimeout()

setImmediate() and setTimeout() are similar, but behave in different ways depending on when they are called.

  • setImmediate() is designed to execute a script once the current poll phase completes.
  • setTimeout() schedules a script to be run after a minimum threshold in ms has elapsed.

The order in which the timers are executed will vary depending on the context in which they are called. If both are called from within the main module, then timing will be bound by the performance of the process (which can be impacted by other applications running on the machine).

For example, if we run the following script which is not within an I/O cycle (i.e. the main module), the order in which the two timers are executed is non-deterministic, as it is bound by the performance of the process:

// timeout_vs_immediate.js
setTimeout(() => {
console.log('timeout');
}, 0); setImmediate(() => {
console.log('immediate');
});
$ node timeout_vs_immediate.js
timeout
immediate $ node timeout_vs_immediate.js
immediate
timeout

However, if you move the two calls within an I/O cycle, the immediate callback is always executed first:

// timeout_vs_immediate.js
const fs = require('fs'); fs.readFile(__filename, () => {
setTimeout(() => {
console.log('timeout');
}, 0);
setImmediate(() => {
console.log('immediate');
});
});
$ node timeout_vs_immediate.js
immediate
timeout $ node timeout_vs_immediate.js
immediate
timeout

The main advantage to using setImmediate() over setTimeout() is setImmediate()will always be executed before any timers if scheduled within an I/O cycle, independently of how many timers are present.

process.nextTick()

Understanding process.nextTick()

You may have noticed that process.nextTick() was not displayed in the diagram, even though it's a part of the asynchronous API. This is because process.nextTick() is not technically part of the event loop. Instead, the nextTickQueue will be processed after the current operation is completed, regardless of the current phase of the event loop. Here, an operation is defined as a transition from the underlying C/C++ handler, and handling the JavaScript that needs to be executed.

Looking back at our diagram, any time you call process.nextTick() in a given phase, all callbacks passed to process.nextTick() will be resolved before the event loop continues. This can create some bad situations because it allows you to "starve" your I/O by making recursive process.nextTick() calls, which prevents the event loop from reaching the poll phase.

Why would that be allowed?

Why would something like this be included in Node.js? Part of it is a design philosophy where an API should always be asynchronous even where it doesn't have to be. Take this code snippet for example:

function apiCall(arg, callback) {
if (typeof arg !== 'string')
return process.nextTick(callback,
new TypeError('argument should be string'));
}

The snippet does an argument check and if it's not correct, it will pass the error to the callback. The API updated fairly recently to allow passing arguments to process.nextTick() allowing it to take any arguments passed after the callback to be propagated as the arguments to the callback so you don't have to nest functions.

What we're doing is passing an error back to the user but only after we have allowed the rest of the user's code to execute. By using process.nextTick() we guarantee that apiCall() always runs its callback after the rest of the user's code and before the event loop is allowed to proceed. To achieve this, the JS call stack is allowed to unwind then immediately execute the provided callback which allows a person to make recursive calls to process.nextTick() without reaching a RangeError: Maximum call stack size exceeded from v8.

This philosophy can lead to some potentially problematic situations. Take this snippet for example:

let bar;

// this has an asynchronous signature, but calls callback synchronously
function someAsyncApiCall(callback) { callback(); } // the callback is called before `someAsyncApiCall` completes.
someAsyncApiCall(() => {
// since someAsyncApiCall hasn't completed, bar hasn't been assigned any value
console.log('bar', bar); // undefined
}); bar = 1;

The user defines someAsyncApiCall() to have an asynchronous signature, but it actually operates synchronously. When it is called, the callback provided to someAsyncApiCall()is called in the same phase of the event loop because someAsyncApiCall() doesn't actually do anything asynchronously. As a result, the callback tries to reference bar even though it may not have that variable in scope yet, because the script has not been able to run to completion.

By placing the callback in a process.nextTick(), the script still has the ability to run to completion, allowing all the variables, functions, etc., to be initialized prior to the callback being called. It also has the advantage of not allowing the event loop to continue. It may be useful for the user to be alerted to an error before the event loop is allowed to continue. Here is the previous example using process.nextTick():

let bar;

function someAsyncApiCall(callback) {
process.nextTick(callback);
} someAsyncApiCall(() => {
console.log('bar', bar); // 1
}); bar = 1;

Here's another real world example:

const server = net.createServer(() => {}).listen(8080);

server.on('listening', () => {});

When only a port is passed, the port is bound immediately. So, the 'listening' callback could be called immediately. The problem is that the .on('listening') callback will not have been set by that time.

To get around this, the 'listening' event is queued in a nextTick() to allow the script to run to completion. This allows the user to set any event handlers they want.

process.nextTick() vs setImmediate()

We have two calls that are similar as far as users are concerned, but their names are confusing.

  • process.nextTick() fires immediately on the same phase
  • setImmediate() fires on the following iteration or 'tick' of the event loop

In essence, the names should be swapped. process.nextTick() fires more immediately than setImmediate(), but this is an artifact of the past which is unlikely to change. Making this switch would break a large percentage of the packages on npm. Every day more new modules are being added, which means every day we wait, more potential breakages occur. While they are confusing, the names themselves won't change.

We recommend developers use setImmediate() in all cases because it's easier to reason about.

Why use process.nextTick()?

There are two main reasons:

  1. Allow users to handle errors, cleanup any then unneeded resources, or perhaps try the request again before the event loop continues.

  2. At times it's necessary to allow a callback to run after the call stack has unwound but before the event loop continues.

One example is to match the user's expectations. Simple example:

const server = net.createServer();
server.on('connection', (conn) => { }); server.listen(8080);
server.on('listening', () => { });

Say that listen() is run at the beginning of the event loop, but the listening callback is placed in a setImmediate(). Unless a hostname is passed, binding to the port will happen immediately. For the event loop to proceed, it must hit the poll phase, which means there is a non-zero chance that a connection could have been received allowing the connection event to be fired before the listening event.

Another example is running a function constructor that was to, say, inherit from EventEmitter and it wanted to call an event within the constructor:

const EventEmitter = require('events');
const util = require('util'); function MyEmitter() {
EventEmitter.call(this);
this.emit('event');
}
util.inherits(MyEmitter, EventEmitter); const myEmitter = new MyEmitter();
myEmitter.on('event', () => {
console.log('an event occurred!');
});

You can't emit an event from the constructor immediately because the script will not have processed to the point where the user assigns a callback to that event. So, within the constructor itself, you can use process.nextTick() to set a callback to emit the event after the constructor has finished, which provides the expected results:

const EventEmitter = require('events');
const util = require('util'); function MyEmitter() {
EventEmitter.call(this); // use nextTick to emit the event once a handler is assigned
process.nextTick(() => {
this.emit('event');
});
}
util.inherits(MyEmitter, EventEmitter); const myEmitter = new MyEmitter();
myEmitter.on('event', () => {
console.log('an event occurred!');
});
 
 
 

The Node.js Event Loop, Timers, and process.nextTick()的更多相关文章

  1. The Node.js Event Loop, Timers, and process.nextTick() Node.js事件循环,定时器和process.nextTick()

    个人翻译 原文:https://nodejs.org/en/docs/guides/event-loop-timers-and-nexttick/ The Node.js Event Loop, Ti ...

  2. Node.js Event Loop 的理解 Timers,process.nextTick()

    写这篇文章的目的是将自己对该文章的理解做一个记录,官方文档链接The Node.js Event Loop, Timers, and process.nextTick() 文章内容可能有错误理解的地方 ...

  3. Node.js event loop 和 JS 浏览器环境下的事件循环的区别

    Node.js  event loop 和 JS 浏览器环境下的事件循环的区别: 1.线程与进程: JS 是单线程执行的,指的是一个进程里只有一个主线程,那到底什么是线程?什么是进程? 进程是 CPU ...

  4. [译]Node.js - Event Loop

    介绍 在读这篇博客之前,我强列建议先阅读我的前两篇文章: Getting Started With Node.js Node.js - Modules 在这篇文章中,我们将学习 Node.js 中的事 ...

  5. [NodeJs系列][译]理解NodeJs中的Event Loop、Timers以及process.nextTick()

    译者注: 为什么要翻译?其实在翻译这篇文章前,笔者有Google了一下中文翻译,看的不是很明白,所以才有自己翻译的打算,当然能力有限,文中或有错漏,欢迎指正. 文末会有几个小问题,大家不妨一起思考一下 ...

  6. JS event loop

    一.为什么JavaScript是单线程? JavaScript语言的一大特点就是单线程,也就是说,同一个时间只能做一件事.那么,为什么JavaScript不能有多个线程呢?这样能提高效率啊. Java ...

  7. node.js 标准/错误输出 和 process.exit

    node.js中,各种模块有一种标准的写法: this._process.exec(command, options, function (err, stdout, stderr) { callbac ...

  8. js event loop事件循环

    浏览器环境 以下两段代码是等价的.req对事件的回调设置,实际上就是当前主线程任务队列的任务. var req = new XMLHttpRequest(); req.open('GET', url) ...

  9. 浅析Node.js的Event Loop

    目录 浅析Node.js的Event Loop 引出问题 Node.js的基本架构 Libuv Event Loop Event Loop Phases Overview Poll Phase The ...

随机推荐

  1. 整合SSM框架

    整合SSM 基本环境搭建 导入相关的pom依赖! <dependencies> <!--Junit--> <dependency> <groupId>j ...

  2. 记一次诡异的debug

    idea debug的时候会开启一个线程之行 toString,所以我们一般不要在toString 做什么操作. 目前在读spring解析自定义标签的源. 解析过程中在XmlBeanDefinitio ...

  3. CentOS 8 安装Nginx

    安装命令: dnf install nginx -y 这就安装完成了 ,对你没看错一个命令就已经把nginx安装好了,不信你通过 nginx -V 命令查看. 常用操作: 1.nginx配置文件目录 ...

  4. Eclipse 使用svn时出现 “Previous operation has not finished; run 'cleanup' if it was interrupted“问题

    在执行svn操作的时候出现了下面的问题 commit -m "" E:/eclipse/workplace/BRobotAPP/blockly/googleDemo/blockly ...

  5. 计算-服务器最大并发量-http协议请求-以webSphere服务器为例-考虑线程池

    请求的处理流程 广域网上有大量的并发用户同时访问Web服务器,Web服务器传递请求给应用服务器(Web容器),Web容器传递请求给EJB容器,然后EJB容器发送数据库连接请求给数据库. 请求的处理流程 ...

  6. 2021年了,C 语言会被淘汰吗?

    一年365天,总有那么几百天听到有人说"C语言过时了""C语言要被时代淘汰了",那么真的会被淘汰吗? C 语言发布于 1972 年,到2021年已经有49年的历 ...

  7. Spring用了哪些设计模式?

    设计模式是一套被反复使用的.多数人知晓的.经过分类编目的.代码设计经验的总结.总共有 23 种设计模式 使用设计模式是为了重用代码.让代码更容易被他人理解.保证代码可靠性. Spring用了哪些设计模 ...

  8. LeetCode394 字符串解码

    给定一个经过编码的字符串,返回它解码后的字符串. 编码规则为: k[encoded_string],表示其中方括号内部的 encoded_string 正好重复 k 次.注意 k 保证为正整数. 你可 ...

  9. [工作札记]02: .Net Winform控件TreeView最简递归绑定方法

    前言:Treeview控件是我们在WinForm.WebForm开发中经常使用的控件,需要从数据库动态加载数据,然后递归绑定每一个节点:同样,递归的思路在其他程序中也经常运用,包括.Net MVC等. ...

  10. Docker学习笔记之向服务器部署应用程序

    部署的应用仅仅是简单应用程序,使用的是node管理的web应用,具体我也不是很会,当然也可以配置tomcat服务器.这里主要是学习docker.需要客户机和服务机,其中服务机必须要为Linux操作系统 ...