数据结构之二叉搜索树(BST)--JavaScript实现
原理:
叉排序树的查找过程和次优二叉树类似,通常采取二叉链表作为二叉排序树的存储结构。中序遍历二叉排序树可得到一个关键字的有序序列,一个无序序列可以通过构造一棵二叉排序树变成一个有序序列,构造树的过程即为对无序序列进行排序的过程。每次插入的新的结点都是二叉排序树上新的叶子结点,在进行插入操作时,不必移动其它结点,只需改动某个结点的指针,由空变为非空即可。搜索,插入,删除的复杂度等于树高,O(log(n)).
JavaScript实现:
var BinarySearchTree = function(){
this.root = null;
}
BinarySearchTree.prototype = {
insert: function(key){//插入
var newNode = new this.Node(key);
if(this.root === null){
this.root = newNode;
}else{
this.insertNode(this.root, newNode)
}
console.log(this.root)
},
inOrderTraverse: function(callback){//中序查找
this.inOrderTraverseNode(this.root, callback);
},
preOrderTraverse: function(callback){//先序查找
this.preOrderTraverseNode(this.root, callback);
},
postOrderTraverse: function(callback){//后序查找
this.postOrderTraverseNode(this.root, callback);
},
min: function(){//最小值
return this.minNode(this.root)
},
max: function(){//最大值
return this.maxNode(this.root)
},
search: function(key){//查找
this.searchNode(this.root, key)
},
remove: function(key){//移除树节点
this.removeNode(this.root, key)
},
Node: function(key){
this.key = key;
this.left = null;
this.right = null;
},
insertNode: function(node, newNode){
if(newNode.key < node.key){
if(node.left === null){
node.left = newNode;
}else{
this.insertNode(node.left, newNode)
}
}else{
if(node.right === null){
node.right = newNode;
}else{
this.insertNode(node.right, newNode)
}
}
},
inOrderTraverseNode: function(node, callback){
if(node !== null){
this.inOrderTraverseNode(node.left, callback);
callback(node.key);
this.inOrderTraverseNode(node.right, callback);
}
},
preOrderTraverseNode: function(node, callback){
if(node !== null){
callback(node.key);
this.preOrderTraverseNode(node.left, callback);
this.preOrderTraverseNode(node.right, callback);
}
},
postOrderTraverseNode: function(node, callback){
if(node !== null){
this.postOrderTraverseNode(node.left, callback);
this.postOrderTraverseNode(node.right, callback);
callback(node.key);
}
},
minNode: function(node){
if(node){
while(node && node.left !== null){
node = node.left;
}
return node.key;
}
return null;
},
maxNode: function(node){
if(node){
while(node && node.right !== null){
node = node.right;
}
return node.key;
}
return null;
},
searchNode: function(node, key){
if(node === null)
return false;
if(key < node.key){
return this.searchNode(node.left, key);
}else if(key > node.key){
return this.searchNode(node.right, key);
}else{
return true;
}
},
removeNode(node, key){
if(node === null)
return null;
if(key < node.key){
node.left = this.removeNode(node.left, key);
return node;
}else if(key > node.key){
node.right = this.removeNode(node.right, key);
return node;
}else{
if(node.left === null && node.right === null){
node = null;
return node;
}else if(node.left === null){
node = node.right;
return node;
}else if(node.right === null){
node = node.left;
return node;
}
var aux = this.findMinNode(node.right);
node.key = aux.key;
node.right = this.removeNode(node.right, aux.key);
return node;
}
},
findMinNode: function(node){
if(node){
while(node && node.left !== null){
node = node.left;
}
return node.key;
}
return null;
}
}
数据结构之二叉搜索树(BST)--JavaScript实现的更多相关文章
- hdu 3791:二叉搜索树(数据结构,二叉搜索树 BST)
二叉搜索树 Time Limit : 2000/1000ms (Java/Other) Memory Limit : 32768/32768K (Java/Other) Total Submiss ...
- C++版 - 剑指offer 面试题24:二叉搜索树BST的后序遍历序列(的判断) 题解
剑指offer 面试题24:二叉搜索树的后序遍历序列(的判断) 题目:输入一个整数数组,判断该数组是不是某二叉搜索树的后序遍历的结果.如果是则返回true.否则返回false.假设输入的数组的任意两个 ...
- 萌新笔记之二叉搜索树(BST)
前言,以前搞过线段树,二叉树觉得也就那样= =.然后数据结构的课也没怎么听过,然后下周期中考... 本来以为今天英语考完可以好好搞ACM了,然后这个数据结构期中考感觉会丢人,还是好好学习一波. 二叉搜 ...
- 给定一个二叉搜索树(BST),找到树中第 K 小的节点
问题:给定一个二叉搜索树(BST),找到树中第 K 小的节点. 出题人:阿里巴巴出题专家:文景/阿里云 CDN 资深技术专家. 考察点: 1. 基础数据结构的理解和编码能力 2. 递归使用 参考答案 ...
- 数据结构☞二叉搜索树BST
二叉查找树(Binary Search Tree),(又:二叉搜索树,二叉排序树)它可以是一棵空树,也可以是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值: 若它 ...
- 数据结构-二叉搜索树(BST binary search tree)
本文由@呆代待殆原创,转载请注明出处:http://www.cnblogs.com/coffeeSS/ 二叉搜索树简介 顾名思义,二叉搜索树是以一棵二叉树来组织的,这样的一棵树可以用一个链表数据结构来 ...
- 数据结构---二叉搜索树BST实现
1. 二叉查找树 二叉查找树(Binary Search Tree),也称为二叉搜索树.有序二叉树(ordered binary tree)或排序二叉树(sorted binary tree),是指一 ...
- 看动画学算法之:二叉搜索树BST
目录 简介 BST的基本性质 BST的构建 BST的搜索 BST的插入 BST的删除 简介 树是类似于链表的数据结构,和链表的线性结构不同的是,树是具有层次结构的非线性的数据结构. 树是由很多个节点组 ...
- 【算法与数据结构】二叉搜索树的Java实现
为了更加深入了解二叉搜索树,博主自己用Java写了个二叉搜索树,有兴趣的同学可以一起探讨探讨. 首先,二叉搜索树是啥?它有什么用呢? 二叉搜索树, 也称二叉排序树,它的每个节点的数据结构为1个父节点指 ...
- 在二叉搜索树(BST)中查找第K个大的结点之非递归实现
一个被广泛使用的面试题: 给定一个二叉搜索树,请找出其中的第K个大的结点. PS:我第一次在面试的时候被问到这个问题而且让我直接在白纸上写的时候,直接蒙圈了,因为没有刷题准备,所以就会有伤害.(面完的 ...
随机推荐
- 使用CURL和火车头软件采集搜狐文章
直接上代码: //参数1:访问的URL,参数2:post数据(不填则为GET),参数3:提交的$cookies,参数4:是否返回$cookies function curl_request($url, ...
- 迷宫城堡+算法讲解【tarjian算法】
Tarjan 算法 参考博客:https://www.cnblogs.com/shadowland/p/5872257.html 算法讲解 Tarjan 算法一种由Robert Tarjan提出的求解 ...
- Redis底层结构全了解
第一篇文章,思来想去,写一写Redis吧,最近在深入研究它. 一丶Redis底层结构 1. redis 存储结构 redis的存储结构从外层往内层依次是redisDb.dict.dictht.dict ...
- LaTeX实时预览中文
参考资料:http://blog.sina.com.cn/s/blog_6ea58f530101aizw.html 功夫不负有心人,终于在经过艰苦卓绝的寻找之后,让我的Texpad实现了实时预览.此时 ...
- tcpdump抓包工具的基本使用
为了更好的深入理解计算机网络等相关知识,例如TCP\UDP\IP等,我们就必须利用tcpdump.Wireshark等工具对网络进行分析.本篇博文主要记录一下tcpdump这个网络分析利器的一些基本使 ...
- 读Linux高性能服务器编程-12章http服务器源码
title:用线程池实现的http服务器 从main函数看起 解析ip地址(点分制, 端口号) 设置忽略SIGPIPE信号 初始化线程池,池中创建了8个线程,每个线程对应一个work函数 初始化htt ...
- Windows 程序设计(4) MFC-02 基本控件-下
1. TabCtrl 标签控件 1.1 创建主窗口 1)CMFCTabControlDlg,拖拽标签控件 2)增加变量 CTabCtrl m_tabCtrl 3)设置相关成员变量和处理函数 CFile ...
- WeChair项目Alpha冲刺(6/10)
团队项目进行情况 1.昨日进展 Alpha冲刺第六天 昨日进展: 前端:和后端成功交互,页面修改和完善 后端:和前端成功交互,但是数据解密失败,初步编写登录的service层和dao层代码未测试 ...
- Project Loom:Reactive模型和协程进行时(翻译)
Java 15将发布Project Loom的第一个版本.我相信这将改变JVM.在这篇文章中,我想深入探讨一下导致我相信这一点的原因. 首先,我们需要了解核心问题.然后,我将尝试描述以前的技术如何解决 ...
- Mac OS 生成 icon 和 ico 文件
[本文版权归微信公众号"代码艺术"(ID:onblog)所有,若是转载请务必保留本段原创声明,违者必究.若是文章有不足之处,欢迎关注微信公众号私信与我进行交流!] 1. 生成 IC ...