题解 洛谷 P5465 【[PKUSC2018]星际穿越】
首先考虑题目的性质,发现点向区间连的边为双向边,所以也就可以从一个点向右跳到区间包含该点的点,如图所示:

但事实上向后跳其实是不优的,可以有更好的方法来节省花费:

因此我们发现一个点跳到其前一个区间的花费为 \(1\),且在跳跃过程中不会向右跳,同时我们还证明了一个点向左的花费单调递增。
但是从起点进行第一步跳跃时,有可能会向后跳:

其通过向后跳来到达一个更大的包含该点的区间,然后使下一步跳跃到达一个更向前的位置,第一步采取向后跳方案的花费为 \(2\)。
发现只有第一步是特殊的,所以单独来考虑第一步的情况。
设 \(pos_i=\min\limits_{j=i}^n l_j\),即 \(l_i\) 的后缀最小值,\(pos_i\) 即为位置 \(i\) 第一步采取向后跳方案来到达的最向前的位置。
对每个位置建可持久化线段树,线段树中对应的值为该位置不考虑第一步的花费,位置 \(i\) 的线段树从位置 \(pos_i\) 转移过来,然后在区间 \([1,i-1]\) 通过标记永久化来实现区间加一,表示不是第一步跳的花费。
查询时只需在 \(l_x\) 所对应的线段树上查询区间 \([l,min(r,l_x-1)]\) 的和,其为位置 \(x\) 除去第一步的总花费,然后再加上第一步花费的贡献即可。
\(code:\)
#include<bits/stdc++.h>
#define maxn 300010
#define maxm 10000010
#define mid ((l+r)>>1)
using namespace std;
typedef long long ll;
template<typename T> inline void read(T &x)
{
x=0;char c=getchar();bool flag=false;
while(!isdigit(c)){if(c=='-')flag=true;c=getchar();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=getchar();}
if(flag)x=-x;
}
int n,q,tot;
int a[maxn],pos[maxn],rt[maxn],ls[maxm],rs[maxm];
ll sum[maxm],add[maxm];
ll gcd(ll a,ll b)
{
return b?gcd(b,a%b):a;
}
void modify(int L,int R,int l,int r,int &cur)
{
int x=++tot;
ls[x]=ls[cur],rs[x]=rs[cur],add[x]=add[cur];
sum[x]=sum[cur]+(min(R,r)-max(L,l)+1),cur=x;
if(L<=l&&R>=r)
{
add[cur]++;
return;
}
if(L<=mid) modify(L,R,l,mid,ls[cur]);
if(R>mid) modify(L,R,mid+1,r,rs[cur]);
}
ll query(int L,int R,int l,int r,int cur)
{
if(L>R) return 0;
if(L<=l&&R>=r) return sum[cur];
ll v=add[cur]*(min(R,r)-max(L,l)+1);
if(L<=mid) v+=query(L,R,l,mid,ls[cur]);
if(R>mid) v+=query(L,R,mid+1,r,rs[cur]);
return v;
}
int main()
{
read(n);
for(int i=2;i<=n;++i) read(a[i]),pos[i]=a[i];
for(int i=n-1;i>=2;--i) pos[i]=min(pos[i],pos[i+1]);
for(int i=2;i<=n;++i) rt[i]=rt[pos[i]],modify(1,i-1,1,n,rt[i]);
read(q);
while(q--)
{
int l,r,x;
ll g,v;
read(l),read(r),read(x),v=r-l+1;
v+=query(l,min(r,a[x]-1),1,n,rt[a[x]]);
g=gcd(v,r-l+1),printf("%lld/%lld\n",v/g,(r-l+1)/g);
}
return 0;
}
题解 洛谷 P5465 【[PKUSC2018]星际穿越】的更多相关文章
- [PKUSC2018]星际穿越
[PKUSC2018]星际穿越 题目大意: 有一排编号为\(1\sim n\)的\(n(n\le3\times10^5)\)个点,第\(i(i\ge 2)\)个点与\([l_i,i-1]\)之间所有点 ...
- 最小生成树+LCA【洛谷 P2245】 星际导航
[洛谷 P2245] 星际导航 题目描述 sideman做好了回到Gliese 星球的硬件准备,但是sideman的导航系统还没有完全设计好.为了方便起见,我们可以认为宇宙是一张有N 个顶点和M 条边 ...
- [Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增)
[Luogu 5465] [LOJ 6435] [PKUSC2018]星际穿越(倍增) 题面 n个点的图,点i和[l[i],i)的所有点连双向边.每次询问(l,r,x)表示x到[l,r]的所有点的最短 ...
- 洛谷P3324 [SDOI2015]星际战争
题目:洛谷P3324 [SDOI2015]星际战争 思路: 类似<导弹防御塔>,因为题目保证有解,花费时间小于最终答案时一定无法消灭所有敌人,只要花费时间大于等于最终答案都可以消灭所有敌人 ...
- 洛谷 P2317 [HNOI2005]星际贸易 解题报告
P2317 [HNOI2005]星际贸易 题目描述 输入输出格式 输入格式: 输出格式: 如果可以找到这样的方案,那么输出文件output.txt中包含两个整数X和Y.X表示贸易额,Y表示净利润并且两 ...
- 题解 洛谷P5018【对称二叉树】(noip2018T4)
\(noip2018\) \(T4\)题解 其实呢,我是觉得这题比\(T3\)水到不知道哪里去了 毕竟我比较菜,不大会\(dp\) 好了开始讲正事 这题其实考察的其实就是选手对D(大)F(法)S(师) ...
- 题解 洛谷 P3396 【哈希冲突】(根号分治)
根号分治 前言 本题是一道讲解根号分治思想的论文题(然鹅我并没有找到论文),正 如论文中所说,根号算法--不仅是分块,根号分治利用的思想和分块像 似却又不同,某一篇洛谷日报中说过,分块算法实质上是一种 ...
- 题解-洛谷P5410 【模板】扩展 KMP(Z 函数)
题面 洛谷P5410 [模板]扩展 KMP(Z 函数) 给定两个字符串 \(a,b\),要求出两个数组:\(b\) 的 \(z\) 函数数组 \(z\).\(b\) 与 \(a\) 的每一个后缀的 L ...
- 题解-洛谷P4229 某位歌姬的故事
题面 洛谷P4229 某位歌姬的故事 \(T\) 组测试数据.有 \(n\) 个音节,每个音节 \(h_i\in[1,A]\),还有 \(m\) 个限制 \((l_i,r_i,g_i)\) 表示 \( ...
随机推荐
- Linux Systemd 详细介绍: Unit、Unit File、Systemctl、Target
Systemd 简介 CentOS 7 使用 Systemd 替换了SysV Ubuntu 从 15.04 开始使用 Systemd Systemd 是 Linux 系统工具,用来启动守护进程,已成为 ...
- 黎活明8天快速掌握android视频教程--24_网络通信之网页源码查看器
1 该项目的主要功能就是从将后台的html网页在Android的界面上显示出来 后台就是建立一个java web工程在工程尚建立一个html或者jsp文件就可以了,这里主要看Android客户端的程序 ...
- android handle详解3 ThreadHandler
在android handle详解2的基础上,我们来学习ThreadHandler ThreadHandler的本质就是对android handle详解2的实现 HandlerThread其实还是一 ...
- 并发05--JAVA并发容器、框架、原子操作类
一.ConcurrentHashMap的实现原理与使用 1.为什么要使用ConsurrentHashMap 两个原因,hashMap线程不安全(多线程并发put时,可能造成Entry链表变成环形数据结 ...
- node+ajax实战案例(1)
1.mysql入门 1.1.数据库相关概念 1.1.1.什么是数据? 描述事物的符号记录称为数据,描述事物的符号可以是数字.文字.声音.图片.视频等,有多种表现形式,都可以经过数字化后存入计算机 1. ...
- C# 做的Windows 应用程序 服务
运行服务: ,cmd下进入目录 cd C:\Windows\Microsoft.NET\Framework\v4.0.30319\ ,安装服务 installutil F:\中原集团\天津CCHR\t ...
- 一.5.序列化应用之服务器制造厂与型号app功能
1.环境准备: (python36env) [vagrant@CentOS7 apps]$ django-admin startapp manufacturer (1)激活:'manufacturer ...
- iview表单验证--数字必填+校验
直接使用: { required: true, type:"integer", message:"请填写整数", trigger: "blur&quo ...
- java语言进阶(一)_Object类_常用API
第一章 Object类 1.1 概述 java.lang.Object类是Java语言中的根类,即所有类的父类.它中描述的所有方法子类都可以使用.在对象实例化的时候,最终找的父类就是Object. 如 ...
- Python-自动用0补取长度
描述 Python zfill() 方法返回指定长度的字符串,原字符串右对齐,前面填充0. 语法 zfill()方法语法: str.zfill(width) 参数 width -- 指定字符串的长度. ...