C++ 简单介绍线段树
题目描述
如题,已知一个数列,你需要进行下面两种操作:
- 将某区间每一个数加上k。
- 求出某区间每一个数的和。
输入格式
第一行包含两个整数n,m分别表示该数列数字的个数和操作的总个数。
第二行包含n个用空格分隔的整数,其中第i个数字表示数列第i项的初始值。
接下来m行每行包含3或4个整数,表示一个操作,具体如下:
1 x y k
:将区间[x,y]内的数每个加上k。2 x y
:输出区间[x,y]内每个数的和。
输出格式
输出包含若干行整数,即为所有操作 2 的结果。
输入输出样例
5 5
1 5 4 2 3
2 2 4
1 2 3 2
2 3 4
1 1 5 1
2 1 4
11
8
20
说明/提示
保证任意时刻数列中任意元素的和在[-2^63,2^63)内。
对于100%的数据,1<=n,m<=10^5。
【样例解释】
这是一个经典的线段树,曾经让我满脸懵逼的算法,但是真的很好用。(虽然代码有点长)今天我讲讲自己的理解,希望能帮到不会的同学。
一张烂到不能再烂的图片:
这张图片的最低层就是原数组,每个方块下面的数组就是在线段树数组中的位置。先从1开始,如果现在的位置是一个点,就返回这个点的值,否则继续向下查找,然后把这个点的值设定为他左右儿子的和。
一个神奇的操作:
void build(long long int l,long long int r,long long int k)
{
tree[k].l=l;//tree是线段树数组,l和r分别是左右点位置。
tree[k].r=r;
if(l==r)//如果是同一个点,表示到达叶子节点,该输入了。
{
scanf("%lld",&tree[k].zhi);
return ;
}
int mid=(l+r)/2;//分成2段,二分。
build(l,mid,k*2);//一个位置是k*2
build(mid+1,r,k*2+1);//一个位置是k*2+1
tree[k].zhi=tree[k*2].zhi+tree[k*2+1].zhi;//父节点的值相当于2个子节点的和。
}
这就是线段树的初始化。大家可以输出一下tree数组的zhi变量,一定和上图一样,每个节点都等于他的两个子节点。
线段树初始化完了。接下来是查找。
上面的初始化我们让父节点等于他的2个子节点相加,我们就根据这个来求区间查找。具体思想是:如果爸爸超过了范围,就去找儿子,一直向下找,直到找到一个被要求的区间完全包含的后代。然后就把他的值返回,这个方法是绝对不会重复的,因为线段树每层每个节点值只包含在一个空间内。如果爸爸被选择,儿子也就没有必要查下去了。就造就了一个上下层不可能被选,同层不存在重叠的现象。所以这种方法不可能重复。
另外还有一个小小的判断,如果要选区间的开头大于儿子的结尾,或者相反,那这个儿子就没比要查下去了。
说了这么多,该写代码了:
void chazhao(long long int k)//现在的位置
{
if(tree[k].l>=q&&tree[k].r<=h)//被完全包含,q,h,是要查找区间的开头和结尾
{
shu+=tree[k].zhi;//shu是最后的加和。
return ;
}
int mid=(tree[k].l+tree[k].r)/2;//获取子节点的结尾位置。
if(q<=mid)//开头小于左子节点的结尾,左子节点包含一部分。需要查看。
{
chazhao(k*2);
}
if(h>mid)//结尾大于右子节点的开头,右子节点包含一部分。需要查看。
{
chazhao(k*2+1);
}
}
查找和建树都是这么草率。好好理解一下二分就可以写出来。接下来是(我认为)最难的区间修改,他需要用到一个神奇的东西,叫做懒标记,其意差不多是这个区间包含的值全都要加a,那我就先算出自己需要的值,加上。再定义一个变量,告诉他这个以下全部都要+a,然后就不管了……咕咕咕
当然没这么容易结束,我们以一种现在不用死活不动的态度来处理这个a。只有需要用到这个区间的子区间时,才会把标记下传。懒标记的好处就是避免无用操作,用得到再动。可以毫不夸张的说,没来懒标记的线段树,连暴力都不如。
void down(long long int k)
{
tree[k*2].zhi+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
tree[k*2].f+=tree[k].f;
tree[k*2+1].zhi+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
tree[k*2+1].f+=tree[k].f;
tree[k].f=0;
return ;
}
下降函数,当需要查找一个空间的子节点,但这个空间的懒标记没有清空,就会对子节点的操作产生误差。每个值都加上a的话,整个空间增加的量就是(存的长度*a)。然后这个空间需要继承父亲要增加的值。因为他的子节点一样要加。但我们仍然以现在不用死活不动的态度来处理。也就是说,不主动向下传,只有要用的时候再传。
要判断是否要用,就要在每个函数都加一些东西:
if(tree[k].f!=0){//如果懒标记不为0,说明他的子节点没有加上应该加的数,会导致误判,所以向下传承懒标记。
down(k);
}
如果在查找的时候不包含,就判断。因为他要去下一层了,需要把这一层的懒标记向下移动。
现在就差最后一步,修改。
void xg(long long int k)
{
if(tree[k].l>=q&&tree[k].r<=h)
{
tree[k].zhi+=(tree[k].r-tree[k].l+1)*a;//先改变本身的值
tree[k].f+=a;//懒标记增加。
return;
}
if(tree[k].f!=0)//要去找儿子,但懒标记还有,向下传。
{
down(k);
}
int mid=(tree[k].l+tree[k].r)/2;
if(q<=mid)
{
xg(k*2);
}
if(h>mid)
{
xg(k*2+1);
}
tree[k].zhi=tree[k*2].zhi+tree[k*2+1].zhi;//父节点的值等于左右子节点的和。
return;
}
好了,现在该上完整的代码了。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<queue>
#include<cmath>
#include<cstring>
using namespace std;
long long n,shu,q,h,m,a,l,r,a1;
struct hehe
{
long long l,r,f,w,zhi;
}tree[400005];//数组大小开到n*4比较保险
void build(long long int l,long long int r,long long int k)
{
tree[k].l=l;//tree是线段树数组,l和r分别是左右点位置。
tree[k].r=r;
if(l==r)//如果是同一个点,表示到达叶子节点,该输入了。
{
scanf("%lld",&tree[k].zhi);
return ;
}
int mid=(l+r)/2;//分成2段,二分。
build(l,mid,k*2);//一个位置是k*2
build(mid+1,r,k*2+1);//一个位置是k*2+1
tree[k].zhi=tree[k*2].zhi+tree[k*2+1].zhi;//父节点的值相当于2个子节点的和。
}
void down(long long int k)
{
tree[k*2].zhi+=tree[k].f*(tree[k*2].r-tree[k*2].l+1);
tree[k*2].f+=tree[k].f;
tree[k*2+1].zhi+=tree[k].f*(tree[k*2+1].r-tree[k*2+1].l+1);
tree[k*2+1].f+=tree[k].f;
tree[k].f=0;
return ;
}
void chazhao(long long int k)//现在的位置
{
if(tree[k].l>=q&&tree[k].r<=h)//被完全包含,q,h,是要查找区间的开头和结尾
{
shu+=tree[k].zhi;//shu是最后的加和。
return ;
}
if(tree[k].f!=0){//如果懒标记不为0,说明他的子节点没有加上应该加的数,会导致误判,所以向下传承懒标记。
down(k);
}
int mid=(tree[k].l+tree[k].r)/2;//获取子节点的结尾位置。
if(q<=mid)//开头小于左子节点的结尾,左子节点包含一部分。需要查看。
{
chazhao(k*2);
}
if(h>mid)//结尾大于右子节点的开头,右子节点包含一部分。需要查看。
{
chazhao(k*2+1);
}
}
void xg(long long int k)
{
if(tree[k].l>=q&&tree[k].r<=h)
{
tree[k].zhi+=(tree[k].r-tree[k].l+1)*a;
tree[k].f+=a;
return;
}
if(tree[k].f!=0)
{
down(k);
}
int mid=(tree[k].l+tree[k].r)/2;
if(q<=mid)
{
xg(k*2);
}
if(h>mid)
{
xg(k*2+1);
}
tree[k].zhi=tree[k*2].zhi+tree[k*2+1].zhi;
return;
}
int main()
{
cin>>n>>m;
build(1,n,1);
for(int i=0;i<m;i++)
{
scanf("%lld",&a1);
if(a1==1)
{
scanf("%lld%lld%lld",&q,&h,&a);
xg(1);
}else if(a1==2)
{
scanf("%lld%lld",&q,&h);
shu=0;
chazhao(1);
cout<<shu<<endl;
}
}
return 0;
}
今天的线段树就先讲到这里,大家快去试试吧。
C++ 简单介绍线段树的更多相关文章
- 线段树:CDOJ1591-An easy problem A (RMQ算法和最简单的线段树模板)
An easy problem A Time Limit: 1000/1000MS (Java/Others) Memory Limit: 65535/65535KB (Java/Others) Pr ...
- 「CQOI2006」简单题 线段树
「CQOI2006」简单题 线段树 水.区间修改,单点查询.用线段树维护区间\([L,R]\)内的所有\(1\)的个数,懒标记表示为当前区间是否需要反转(相对于区间当前状态),下方标记时懒标记取反即可 ...
- 几道简单的线段树入门题 POJ3264&&POJ3468&&POJ2777
Balanced Lineup Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 40687 Accepted: 19137 ...
- ZOJ 3349 Special Subsequence 简单DP + 线段树
同 HDU 2836 只不过改成了求最长子串. DP+线段树单点修改+区间查最值. #include <cstdio> #include <cstring> #include ...
- 洛谷P5057 [CQOI2006]简单题(线段树)
题意 题目链接 Sol 紫色的线段树板子题??... #include<iostream> #include<cstdio> #include<cmath> usi ...
- poj 3468 A Simple Problem with Integers(原来是一道简单的线段树区间修改用来练练splay)
题目链接:http://poj.org/problem?id=3468 题解:splay功能比线段树强大当然代价就是有些操作比线段树慢,这题用splay实现的比线段树慢上一倍.线段树用lazy标记差不 ...
- HDU1556:Color the ball(简单的线段树区域更新)
http://acm.hdu.edu.cn/showproblem.php?pid=1556 Problem Description N个气球排成一排,从左到右依次编号为1,2,3....N.每次给定 ...
- Balanced Lineup(最简单的线段树题目)
Time Limit: 5000MS Memory Limit: 65536K Total Submissions: 33389 Accepted: 15665 Case Time Limit ...
- hdu1556 Color the ball 简单线段树
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1556 简单的线段树的应用 直接贴代码了: 代码: #include<iostream> # ...
随机推荐
- cb11a_c++_顺序容器的操作4_容器大小操作_resize-max_size
cb11a_c++_顺序容器的操作4 2 容器大小的操作 3 c.size() 容器当前的个数 4 c.max_size(),容器最大存储量 5 c.empty() 是否为空 6 c.resize(n ...
- Java学习笔记4(多线程)
多线程 多个程序块同时运行的现象被称作并发执行.多线程就是指一个应用程序中有多条并发执行的线索,每条线索都被称作一条线程,它们会交替执行,彼此间可以进行通信. 进程:在一个操作系统中,每个独立执行的程 ...
- 007.OpenShift管理应用部署
一 REPLICATION CONTROLLERS 1.1 RC概述 RC确保pod指定数量的副本一直运行.如果pod被杀死或被管理员显式删除,复制控制器将自动部署相应的pod.类似地,如果运行的po ...
- JavaWeb网上图书商城完整项目--25.注册页面之隐藏没有内容的错误信息实现
在上一章中我们显示的效果如下所示: 上面后面都有错误的红色×的显示,这样是不对的,我们要解决该问题 我们要循环遍历每一个错误的信息,看它的内容有没有,如果有内容我们就显示错误的×,如果没有就不显示× ...
- base64格式的图片上传阿里云
base64格式的图片上传阿里云 上传图片的时候,除了普通的图片上传,还有一张图片信息是以base64格式发送到后台的. 后台接受base64格式的图片,上传至阿里云代码:(主要是将base64转化成 ...
- centos搭建nginx+fastdfs
软件地址 libfastcommon fastDFS fastdfs-nginx-module nginx 创建目录 mkdir -p /fastdfs/tracker mkdir -p /fastd ...
- Zookeeper分布式过程协同技术 - 概念及基础
Zookeeper分布式过程协同技术 - 概念及基础 Zookeeper是什么? Zookeeper是一种分布式过程协同技术,其所提供的客户端API功能强大,其中包括: 保障强一致性.有序性和持久性. ...
- 锐捷交换机18010-X端口假死现象
一次上架锐捷交换机,由于ODF光衰不稳定,导致交换机端口down,排查很多发现以下故障: 重置18010-X端口发现提示一下命令: Port in violation! Use 'errdisable ...
- SpringBoot2.x的依赖管理
前提 这篇文章是<SpringBoot2.x入门>专辑的第1篇文章,使用的SpringBoot版本为2.3.1.RELEASE,JDK版本为1.8. 主要梳理一下SpringBoot2.x ...
- MFC 结束线程
在wtl工程中定义一个现成,如下:DWORD WINAPI ThreadFunc( LPVOID pParam ){if( g_pMainlg )g_pMainlg->DoEnumNetwork ...