题目链接:http://acm.nyist.edu.cn/JudgeOnline/problem.php?pid=15

经典区间dp,首先枚举区间的大小和该区间的左边界,这时右边界也可计算出来。首先初始化一个匹配,那就是看看这两个括号是否匹配,即:

(s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']') ? dp(i,j) = dp(i+1,j-1)+2) : dp(i,j) = 0

接下来枚举i和j中间的所有点,更新dp(i,j)=max(dp(i,j), dp(i+m)+dp(m+1,j))寻找可能更优的匹配。

 /*
━━━━━┒ギリギリ♂ eye!
┓┏┓┏┓┃キリキリ♂ mind!
┛┗┛┗┛┃\○/
┓┏┓┏┓┃ /
┛┗┛┗┛┃ノ)
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┛┗┛┗┛┃
┓┏┓┏┓┃
┃┃┃┃┃┃
┻┻┻┻┻┻
*/
#include <algorithm>
#include <iostream>
#include <iomanip>
#include <cstring>
#include <climits>
#include <complex>
#include <cassert>
#include <cstdio>
#include <bitset>
#include <vector>
#include <deque>
#include <queue>
#include <stack>
#include <ctime>
#include <set>
#include <map>
#include <cmath>
using namespace std;
#define fr first
#define sc second
#define cl clear
#define BUG puts("here!!!")
#define W(a) while(a--)
#define pb(a) push_back(a)
#define Rint(a) scanf("%d", &a)
#define Rll(a) scanf("%I64d", &a)
#define Rs(a) scanf("%s", a)
#define Cin(a) cin >> a
#define FRead() freopen("in", "r", stdin)
#define FWrite() freopen("out", "w", stdout)
#define Rep(i, len) for(int i = 0; i < (len); i++)
#define For(i, a, len) for(int i = (a); i < (len); i++)
#define Cls(a) memset((a), 0, sizeof(a))
#define Clr(a, x) memset((a), (x), sizeof(a))
#define Full(a) memset((a), 0x7f7f7f, sizeof(a))
#define lrt rt << 1
#define rrt rt << 1 | 1
#define pi 3.14159265359
#define RT return
#define lowbit(x) x & (-x)
#define onenum(x) __builtin_popcount(x)
typedef long long LL;
typedef long double LD;
typedef unsigned long long ULL;
typedef pair<int, int> pii;
typedef pair<string, int> psi;
typedef pair<LL, LL> pll;
typedef map<string, int> msi;
typedef vector<int> vi;
typedef vector<LL> vl;
typedef vector<vl> vvl;
typedef vector<bool> vb; const int maxn = ;
int dp[maxn][maxn];
char s[maxn];
int n; int main() {
// FRead();
int T;
Rint(T);
W(T) {
Rs(s); n = strlen(s);
Cls(dp);
For(k, , n+) {
Rep(i, n-k+) {
dp[i][i+k-] = ;
int j = i + k - ;
if((s[i] == '(' && s[j] == ')') || (s[i] == '[' && s[j] == ']')) {
dp[i][j] = dp[i+][j-] + ;
}
For(m, i, j) {
dp[i][j] = max(dp[i][j], dp[i][m] + dp[m+][j]);
}
}
}
printf("%d\n", n - dp[][n-]);
}
RT ;
}

[NYIST15]括号匹配(二)(区间dp)的更多相关文章

  1. POJ 2955 括号匹配,区间DP

    题意:给你一些括号,问匹配规则成立的括号的个数. 思路:这题lrj的黑书上有,不过他求的是添加最少的括号数,是的这些括号的匹配全部成立. 我想了下,其实这两个问题是一样的,我们可以先求出括号要匹配的最 ...

  2. poj2955:括号匹配,区间dp

    题目大意: 给一个由,(,),[,]组成的字符串,其中(),[]可以匹配,求最大匹配数 题解:区间dp: dp[i][j]表示区间 [i,j]中的最大匹配数 初始状态 dp[i][i+1]=(i,i+ ...

  3. POJ 2955 Brackets --最大括号匹配,区间DP经典题

    题意:给一段左右小.中括号串,求出这一串中最多有多少匹配的括号. 解法:此问题具有最优子结构,dp[i][j]表示i~j中最多匹配的括号,显然如果i,j是匹配的,那么dp[i][j] = dp[i+1 ...

  4. NYOJ15-括号匹配(二)-区间DP

    pid=15">http://acm.nyist.net/JudgeOnline/problem.php? pid=15 dp[i][j]表示从i到j至少须要加入多少个括号才干满足匹配 ...

  5. POJ - 2955 Brackets括号匹配(区间dp)

    Brackets We give the following inductive definition of a “regular brackets” sequence: the empty sequ ...

  6. 「kuangbin带你飞」专题二十二 区间DP

    layout: post title: 「kuangbin带你飞」专题二十二 区间DP author: "luowentaoaa" catalog: true tags: - ku ...

  7. 括号序列(区间dp)

    括号序列(区间dp) 输入一个长度不超过100的,由"(",")","[",")"组成的序列,请添加尽量少的括号,得到一 ...

  8. [kuangbin带你飞]专题二十二 区间DP

            ID Origin Title   17 / 60 Problem A ZOJ 3537 Cake   54 / 105 Problem B LightOJ 1422 Hallowee ...

  9. POJ 1141 Brackets Sequence(括号匹配二)

    题目链接:http://poj.org/problem?id=1141 题目大意:给你一串字符串,让你补全括号,要求补得括号最少,并输出补全后的结果. 解题思路: 开始想的是利用相邻子区间,即dp[i ...

随机推荐

  1. 【BZOJ】【3004】吊灯

    思路题 要将整棵树分成大小相等的连通块,那么首先我们可以肯定的是每块大小x一定是n的约数,且恰好分成$\frac{n}{x}$块,所以我有了这样一个思路:向下深搜,如果一个节点的size=x,就把这个 ...

  2. 【BZOJ】【1036】树的统计

    嗯这题是一道对树进行动态修改&查询的经典题目,可以拿来练习树链剖分~ 啊对于这种动态修改&查询的题目,我们最喜闻乐见的就是在一个序列上去做了,毕竟可以直接套各种数据结构模版啊,比如线段 ...

  3. Codeforces Round #263 (Div. 2)

    吐槽:一辈子要在DIV 2混了. A,B,C都是简单题,看AC人数就知道了. A:如果我们定义数组为N*N的话就不用考虑边界了 #include<iostream> #include &l ...

  4. doctype声明、浏览器的标准、怪异等模式

    doctype 标准(严格)模式(Standards Mode).怪异(混杂)模式(Quirks Mode),如何触发,区分他们有何意义? 触发标准模式 1.加DOCTYPE声明,比如:<!DO ...

  5. poj 3903 Stock Exchange(最长上升子序列,模版题)

    题目 #include<stdio.h> //最长上升子序列 nlogn //入口参数:数组名+数组长度,类型不限,结构体类型可以通过重载运算符实现 //数组下标从1号开始. int bs ...

  6. 后缀树系列一:概念以及实现原理( the Ukkonen algorithm)

    首先说明一下后缀树系列一共会有三篇文章,本文先介绍基本概念以及如何线性时间内构件后缀树,第二篇文章会详细介绍怎么实现后缀树(包含实现代码),第三篇会着重谈一谈后缀树的应用. 本文分为三个部分, 首先介 ...

  7. HDU 1796 How many integers can you find (状态压缩 + 容斥原理)

    题目链接 题意 : 给你N,然后再给M个数,让你找小于N的并且能够整除M里的任意一个数的数有多少,0不算. 思路 :用了容斥原理 : ans = sum{ 整除一个的数 } - sum{ 整除两个的数 ...

  8. dom对象详解--document对象(一)

     document对象 Document对象代表整个html文档,可用来访问页面中的所有元素,是最复杂的一个dom对象,可以说是学习好dom编程的关键所在. Document对象是window对象的一 ...

  9. SQL Server 2008管理工具出现 远程过程调用失败0x800706be解决方法

    解决方法 出现此问题是因为在安装 Visual Studio 2012(VS2012) 时,会自动安装 "Microsoft SQL Server 2012 Express LocalDB& ...

  10. lintcode:逆序对

    题目 在数组中的两个数字如果前面一个数字大于后面的数字,则这两个数字组成一个逆序对.给你一个数组,求出这个数组中逆序对的总数.概括:如果a[i] > a[j] 且 i < j, a[i] ...