295. Find Median from Data Stream
题目:
Median is the middle value in an ordered integer list. If the size of the list is even, there is no middle value. So the median is the mean of the two middle value.
Examples:
[2,3,4] , the median is 3
[2,3], the median is (2 + 3) / 2 = 2.5
Design a data structure that supports the following two operations:
- void addNum(int num) - Add a integer number from the data stream to the data structure.
- double findMedian() - Return the median of all elements so far.
For example:
add(1)
add(2)
findMedian() -> 1.5
add(3)
findMedian() -> 2
链接: http://leetcode.com/problems/find-median-from-data-stream/
题解:
在Data stream中找到median。这道题是Heap的经典应用,需要同时维护一个最大堆和一个最小堆, 最大堆和最小堆的size <= 当前数字count / 2。在学习heap数据结构的时候一般都会讲到这一题,很经典。
Time Complexity: addNum - O(logn) , findMedian - O(1), Space Complexity - O(n)
class MedianFinder {
private PriorityQueue<Integer> maxOrientedHeap;
private PriorityQueue<Integer> minOrientedHeap;
public MedianFinder() {
this.minOrientedHeap = new PriorityQueue<Integer>();
this.maxOrientedHeap = new PriorityQueue<Integer>(10, new Comparator<Integer>() {
public int compare(Integer i1, Integer i2) {
return i2 - i1;
}
});
}
// Adds a number into the data structure.
public void addNum(int num) {
maxOrientedHeap.add(num); // O(logn)
minOrientedHeap.add(maxOrientedHeap.poll()); // O(logn)
if(maxOrientedHeap.size() < minOrientedHeap.size()) {
maxOrientedHeap.add(minOrientedHeap.poll()); //O(logn)
}
}
// Returns the median of current data stream
public double findMedian() { // O(1)
if(maxOrientedHeap.size() == minOrientedHeap.size())
return (maxOrientedHeap.peek() + minOrientedHeap.peek()) / 2.0;
else
return maxOrientedHeap.peek();
}
};
// Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();
二刷:
依然使用了两个PriorityQueue,一个maxPQ,一个minPQ。最小堆中存的是较大的一半数据,最大堆中存的是较小的一半数据。当传入数字计数为奇数是,我们直接返回minPQ.peek(), 否则我们返回 (maxPQ.peek() + minPQ.peek()) / 2.0。 这样做速度不是很理想,也许是maxPQ的lambda表达式构建出的comparator没有得到优化,换成普通的comparator速度至少快一倍。也可以用Collections.reverseOrder()来作为maxPQ的comparator。
见到有些朋友用了构建BST来做,这样减少了几次O(logn)的操作,速度会更快,以后在研究。
Java:
Min and Max Heap
Time Complexity: addNum - O(logn) , findMedian - O(1), Space Complexity - O(n)
class MedianFinder {
Queue<Integer> minPQ = new PriorityQueue<>();
Queue<Integer> maxPQ = new PriorityQueue<>(10, (Integer i1, Integer i2) -> i2 - i1);
// Adds a number into the data structure.
public void addNum(int num) {
minPQ.offer(num);
maxPQ.offer(minPQ.poll());
if (minPQ.size() < maxPQ.size()) minPQ.offer(maxPQ.poll());
}
// Returns the median of current data stream
public double findMedian() {
if (minPQ.size() == maxPQ.size()) return (minPQ.peek() + maxPQ.peek()) / 2.0;
return minPQ.peek();
}
};
// Your MedianFinder object will be instantiated and called as such:
// MedianFinder mf = new MedianFinder();
// mf.addNum(1);
// mf.findMedian();
Reference:
https://leetcode.com/discuss/65107/share-my-java-solution-logn-to-insert-o-1-to-query
https://leetcode.com/discuss/64850/short-simple-java-c-python-o-log-n-o-1
https://leetcode.com/discuss/64811/easy-to-understand-double-heap-solution-in-java
https://leetcode.com/discuss/64910/very-short-o-log-n-o-1
https://leetcode.com/discuss/64842/32ms-easy-to-understand-java-solution
https://leetcode.com/discuss/68290/simple-java-solution-with-2-heaps-and-explanation
https://leetcode.com/discuss/64852/java-python-two-heap-solution-o-log-n-add-o-1-find
https://leetcode.com/discuss/94126/18ms-beats-100%25-java-solution-with-bst
295. Find Median from Data Stream的更多相关文章
- [LeetCode] 295. Find Median from Data Stream ☆☆☆☆☆(数据流中获取中位数)
295. Find Median from Data Stream&数据流中的中位数 295. Find Median from Data Stream https://leetcode.co ...
- 剑指offer 最小的k个数 、 leetcode 215. Kth Largest Element in an Array 、295. Find Median from Data Stream(剑指 数据流中位数)
注意multiset的一个bug: multiset带一个参数的erase函数原型有两种.一是传递一个元素值,如上面例子代码中,这时候删除的是集合中所有值等于输入值的元素,并且返回删除的元素个数:另外 ...
- leetcode@ [295]Find Median from Data Stream
https://leetcode.com/problems/find-median-from-data-stream/ Median is the middle value in an ordered ...
- [leetcode]295. Find Median from Data Stream数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LeetCode] 295. Find Median from Data Stream 找出数据流的中位数
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- [LC] 295. Find Median from Data Stream
Median is the middle value in an ordered integer list. If the size of the list is even, there is no ...
- 【LeetCode】295. Find Median from Data Stream 解题报告(C++)
作者: 负雪明烛 id: fuxuemingzhu 个人博客: http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 大根堆+小根堆 日期 题目地址:https://le ...
- 295 Find Median from Data Stream 数据流的中位数
中位数是排序后列表的中间值.如果列表的大小是偶数,则没有中间值,此时中位数是中间两个数的平均值.示例:[2,3,4] , 中位数是 3[2,3], 中位数是 (2 + 3) / 2 = 2.5设计一个 ...
- LeetCode——295. Find Median from Data Stream
一.题目链接: https://leetcode.com/problems/find-median-from-data-stream 二.题目大意: 给定一段数据流,要求求出数据流中的中位数,其中数据 ...
随机推荐
- MySQL DBA面试全揭秘
来源:http://ourmysql.com/archives/1426 本文起源于有同学留言回复说想了解下MySQL DBA面试时可能涉及到的知识要点,那我们今天就来大概谈谈吧. MySQL DBA ...
- Ubuntu 16.04 下卸载 lnmp/lamp 方法
1.卸载 apache2 sudo apt-get --purge remove apache2* sudo apt-get autoremove apache2 (--purge 是完全删除并且不保 ...
- linshiwendang12--匈牙利
#include<bits/stdc++.h> #define N 10007 using namespace std; vector<int> p[N]; bool vis[ ...
- 【CentOS】samba服务器安装与配置
参考资料: http://www.cnblogs.com/mchina/archive/2012/12/18/2816717.html 1.简介 2.安装 3.配置 1.简介 Samba是一个能让Li ...
- Leetcode#146 LRU Cache
原题地址 以前Leetcode的测试数据比较弱,单纯用链表做也能过,现在就不行了,大数据会超时.通常大家都是用map+双向链表做的. 我曾经尝试用C++的list容器来写,后来发现map没法保存lis ...
- BZOJ 3714: [PA2014]Kuglarz
Description 魔术师的桌子上有n个杯子排成一行,编号为1,2,-,n,其中某些杯子底下藏有一个小球,如果你准确地猜出是哪些杯子,你就可以获得奖品.花费c_ij元,魔术师就会告诉你杯子i,i+ ...
- VS开发工具 不会在异常的地方停止的问题.
启用"仅我的代码"
- 最小PE文件讨论
1.实例1国外的人写的最小的PE文件--97Bytes 4D5A0000504500004C0101006A2A58C30000000000000000040003010B01080004000000 ...
- maven 常用5个命令
1. mvn help:describe 你是否因为记不清某个插件有哪些goal而痛苦过,你是否因为想不起某个goal有哪些参数而苦恼,那就试试这个命令吧,它会告诉你一切的. 参数: 1. -Dplu ...
- Chapter 4
1.Python中有四种函数:全局函数,局部函数,lambda函数,方法.其中全局函数与局部函数对比理解,局部函数就是定义在某函数之内的函数,否则就是全局函数,lambda函数就是表达式,方法就跟对象 ...