题目链接

题意 : 求一个多边形的核的面积。

思路 : 半平面交求多边形的核,然后在求面积即可。

#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h> using namespace std ; struct node
{
double x;
double y ;
} p[],temp[],newp[];//p是最开始的多边形的每个点,temp是中间过程中临时存的多边形的每个点,newp是切割后的多边形的每个点
int n,newn ;//原来的点数,切割后的点数
double a,b,c ;//直线方程的三个系数 void getline(node x,node y)//求x与y两点确定的直线方程ax+by+c=0
{
a = y.y-x.y ;
b = x.x-y.x ;
c = y.x*x.y - y.y*x.x ;
}
node intersect(node x,node y)//求x与y点确定的直线与ax+by+c=0这条直线的交点
{
double u = fabs(a*x.x+b*x.y+c) ;
double v = fabs(a*y.x+b*y.y+c) ;
node t ;
t.x = (x.x*v+y.x*u)/(u+v) ;//y.y-x.y=u+v;y.y-t.y=v;y.y-x.y=u;
t.y = (x.y*v+y.y*u)/(u+v) ;
return t ;
}
void cut()
{
int cutn = ;
for(int i = ; i <= newn ; i++)
{
if(a*newp[i].x+b*newp[i].y+c >= )//所有的点都大于0,说明所有的点都在这条直线的另一边,所以不用切
temp[ ++cutn] = newp[i] ;
else
{
if(a*newp[i-].x+b*newp[i-].y+c > )
temp[++cutn ] = intersect(newp[i-],newp[i]) ;//把新交点加入
if(a*newp[i+].x+b*newp[i+].y+c > )
temp[ ++cutn] = intersect(newp[i+],newp[i]) ;
}
}
for(int i = ; i <= cutn ; i++)
newp[i] = temp[i] ;
newp[cutn+] = temp[] ;//能够找出所有点的前驱和后继
newp[] = temp[cutn] ;
newn = cutn ;
} double solve()
{
for(int i = ; i <= n ; i++)
{
newp[i] = p[i] ;
}
p[n+] = p[] ;
newp[n+] = newp[] ;
newp[] = newp[n] ;
newn = n ;
for(int i = ; i <= n ; i++)
{
getline(p[i],p[i+]) ;//从头开始顺序遍历两个相邻点。
cut() ;
}
//求多边形核的面积
double s = ;
for(int i = ; i <= newn ; i++)
s += newp[i].x*newp[i+].y-newp[i].y*newp[i+].x ;
return s = fabs(s/2.0) ;
}
void guizhenghua()
{
for(int i = ; i < (n+)/ ; i++)//规整化方向,顺时针变逆时针,逆时针变顺时针。
swap(p[i],p[n-i]) ;
}
int main()
{
int T ;
scanf("%d",&T) ;
while(T--)
{
scanf("%d",&n) ;
for(int i = ; i <= n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
double s = solve() ;
printf("%.2lf\n",s) ;
}
return ;
}

POJ 1279 Art Gallery(半平面交求多边形核的面积)的更多相关文章

  1. POJ 1279 Art Gallery 半平面交求多边形核

    第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...

  2. POJ 1279 Art Gallery 半平面交/多边形求核

    http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...

  3. POJ 1279 Art Gallery 半平面交 多边形的核

    题意:求多边形的核的面积 套模板即可 #include <iostream> #include <cstdio> #include <cmath> #define ...

  4. POJ 1279 Art Gallery(半平面交)

    题目链接 回忆了一下,半平面交,整理了一下模版. #include <cstdio> #include <cstring> #include <string> #i ...

  5. POJ 3335 Rotating Scoreboard(半平面交求多边形核)

    题目链接 题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点. 思路 : 半平面交求多边形内核. 半平面交资料 关于求多边形内核的算法 什么是多边形的 ...

  6. poj 1279 Art Gallery - 求多边形核的面积

    /* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...

  7. poj 1279 -- Art Gallery (半平面交)

    鏈接:http://poj.org/problem?id=1279 Art Gallery Time Limit: 1000MS   Memory Limit: 10000K Total Submis ...

  8. poj 1279 Art Gallery (Half Plane Intersection)

    1279 -- Art Gallery 还是半平面交的问题,要求求出多边形中可以观察到多边形所有边的位置区域的面积.其实就是把每一条边看作有向直线然后套用半平面交.这题在输入的时候应该用多边形的有向面 ...

  9. POJ 3335 Rotating Scoreboard 半平面交求核

    LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...

随机推荐

  1. EntityFramwork(2Database First) 源地址https://msdn.microsoft.com/zh-cn/data/jj193542

    必备条件 要完成本演练,需要安装 Visual Studio 2010 或 Visual Studio 2012. 如果使用的是 Visual Studio 2010,还需要安装 NuGet.     ...

  2. bootstrap-fileinput 图片上传

    bootstrap-fileinput 源文件 在网上下载 CSS: <link href="../../static/Bootstrap/css/plugins/bootstrap- ...

  3. objective-c自学总结(一)---面向对象

    本人大二本科在读,利用一个月多一点的时间对OC语言基础进行了自学,在下一阶段UI学习开始之前, 对这一阶段的自学进行一些总结.在此特别感谢刘晓斌学长和无线互联3G学院 首先说一下对OC的整体感觉,这是 ...

  4. 关于在 loadView 中改变状态栏的可视性

    这种问题不知道大家是否遇见过,在此用两句话(时间紧迫,还得加班)分享下今天犯的错误 我把状态栏的的可视性的改变写在了loadView 里面,然后就出现了调用了两次 loadView 和 viewDid ...

  5. scala伴生对象,apply()及单例

    1:伴生对象与apply方法 如果一个class与一个object具有相同的名字,那么我们就认为它们互为伴生.object为class的伴生对象.如下图所示,object Apply为class Ap ...

  6. 【Longest Valid Parentheses】cpp

    题目: Given a string containing just the characters '(' and ')', find the length of the longest valid ...

  7. adb出现unkown host advices 错误

    今日在Windows DOS窗口中输入adb命令,如adb devices,adb shell等后,会出现如下错误: adb server is out of date.  killing... AD ...

  8. 《Soft Skill》一书中的好句子

    The biggest mistake that you can make is to believe that you are working for somebody else. Job secu ...

  9. 【转】利用TCMalloc优化Nginx的性能

    From: http://www.linuxidc.com/Linux/2013-04/83197.html TCMalloc的全称是 Thread-Caching Malloc,是谷歌开发的开源工具 ...

  10. UVALive - 7368 Airports DAG图的最小路径覆盖

    题目链接: http://acm.hust.edu.cn/vjudge/problem/356788 Airports Time Limit: 3000MS 问题描述 An airline compa ...