POJ 1279 Art Gallery(半平面交求多边形核的面积)
题意 : 求一个多边形的核的面积。
思路 : 半平面交求多边形的核,然后在求面积即可。
#include <stdio.h>
#include <string.h>
#include <iostream>
#include <math.h> using namespace std ; struct node
{
double x;
double y ;
} p[],temp[],newp[];//p是最开始的多边形的每个点,temp是中间过程中临时存的多边形的每个点,newp是切割后的多边形的每个点
int n,newn ;//原来的点数,切割后的点数
double a,b,c ;//直线方程的三个系数 void getline(node x,node y)//求x与y两点确定的直线方程ax+by+c=0
{
a = y.y-x.y ;
b = x.x-y.x ;
c = y.x*x.y - y.y*x.x ;
}
node intersect(node x,node y)//求x与y点确定的直线与ax+by+c=0这条直线的交点
{
double u = fabs(a*x.x+b*x.y+c) ;
double v = fabs(a*y.x+b*y.y+c) ;
node t ;
t.x = (x.x*v+y.x*u)/(u+v) ;//y.y-x.y=u+v;y.y-t.y=v;y.y-x.y=u;
t.y = (x.y*v+y.y*u)/(u+v) ;
return t ;
}
void cut()
{
int cutn = ;
for(int i = ; i <= newn ; i++)
{
if(a*newp[i].x+b*newp[i].y+c >= )//所有的点都大于0,说明所有的点都在这条直线的另一边,所以不用切
temp[ ++cutn] = newp[i] ;
else
{
if(a*newp[i-].x+b*newp[i-].y+c > )
temp[++cutn ] = intersect(newp[i-],newp[i]) ;//把新交点加入
if(a*newp[i+].x+b*newp[i+].y+c > )
temp[ ++cutn] = intersect(newp[i+],newp[i]) ;
}
}
for(int i = ; i <= cutn ; i++)
newp[i] = temp[i] ;
newp[cutn+] = temp[] ;//能够找出所有点的前驱和后继
newp[] = temp[cutn] ;
newn = cutn ;
} double solve()
{
for(int i = ; i <= n ; i++)
{
newp[i] = p[i] ;
}
p[n+] = p[] ;
newp[n+] = newp[] ;
newp[] = newp[n] ;
newn = n ;
for(int i = ; i <= n ; i++)
{
getline(p[i],p[i+]) ;//从头开始顺序遍历两个相邻点。
cut() ;
}
//求多边形核的面积
double s = ;
for(int i = ; i <= newn ; i++)
s += newp[i].x*newp[i+].y-newp[i].y*newp[i+].x ;
return s = fabs(s/2.0) ;
}
void guizhenghua()
{
for(int i = ; i < (n+)/ ; i++)//规整化方向,顺时针变逆时针,逆时针变顺时针。
swap(p[i],p[n-i]) ;
}
int main()
{
int T ;
scanf("%d",&T) ;
while(T--)
{
scanf("%d",&n) ;
for(int i = ; i <= n ; i++)
scanf("%lf %lf",&p[i].x,&p[i].y) ;
double s = solve() ;
printf("%.2lf\n",s) ;
}
return ;
}
POJ 1279 Art Gallery(半平面交求多边形核的面积)的更多相关文章
- POJ 1279 Art Gallery 半平面交求多边形核
第一道半平面交,只会写N^2. 将每条边化作一个不等式,ax+by+c>0,所以要固定顺序,方便求解. 半平面交其实就是对一系列的不等式组进行求解可行解. 如果某点在直线右侧,说明那个点在区域内 ...
- POJ 1279 Art Gallery 半平面交/多边形求核
http://poj.org/problem?id=1279 顺时针给你一个多边形...求能看到所有点的面积...用半平面对所有边取交即可,模版题 这里的半平面交是O(n^2)的算法...比较逗比.. ...
- POJ 1279 Art Gallery 半平面交 多边形的核
题意:求多边形的核的面积 套模板即可 #include <iostream> #include <cstdio> #include <cmath> #define ...
- POJ 1279 Art Gallery(半平面交)
题目链接 回忆了一下,半平面交,整理了一下模版. #include <cstdio> #include <cstring> #include <string> #i ...
- POJ 3335 Rotating Scoreboard(半平面交求多边形核)
题目链接 题意 : 给你一个多边形,问你在多边形内部是否存在这样的点,使得这个点能够看到任何在多边形边界上的点. 思路 : 半平面交求多边形内核. 半平面交资料 关于求多边形内核的算法 什么是多边形的 ...
- poj 1279 Art Gallery - 求多边形核的面积
/* poj 1279 Art Gallery - 求多边形核的面积 */ #include<stdio.h> #include<math.h> #include <al ...
- poj 1279 -- Art Gallery (半平面交)
鏈接:http://poj.org/problem?id=1279 Art Gallery Time Limit: 1000MS Memory Limit: 10000K Total Submis ...
- poj 1279 Art Gallery (Half Plane Intersection)
1279 -- Art Gallery 还是半平面交的问题,要求求出多边形中可以观察到多边形所有边的位置区域的面积.其实就是把每一条边看作有向直线然后套用半平面交.这题在输入的时候应该用多边形的有向面 ...
- POJ 3335 Rotating Scoreboard 半平面交求核
LINK 题意:给出一个多边形,求是否存在核. 思路:比较裸的题,要注意的是求系数和交点时的x和y坐标不要搞混...判断核的顶点数是否大于1就行了 /** @Date : 2017-07-20 19: ...
随机推荐
- EntityFramwork(2Database First) 源地址https://msdn.microsoft.com/zh-cn/data/jj193542
必备条件 要完成本演练,需要安装 Visual Studio 2010 或 Visual Studio 2012. 如果使用的是 Visual Studio 2010,还需要安装 NuGet. ...
- bootstrap-fileinput 图片上传
bootstrap-fileinput 源文件 在网上下载 CSS: <link href="../../static/Bootstrap/css/plugins/bootstrap- ...
- objective-c自学总结(一)---面向对象
本人大二本科在读,利用一个月多一点的时间对OC语言基础进行了自学,在下一阶段UI学习开始之前, 对这一阶段的自学进行一些总结.在此特别感谢刘晓斌学长和无线互联3G学院 首先说一下对OC的整体感觉,这是 ...
- 关于在 loadView 中改变状态栏的可视性
这种问题不知道大家是否遇见过,在此用两句话(时间紧迫,还得加班)分享下今天犯的错误 我把状态栏的的可视性的改变写在了loadView 里面,然后就出现了调用了两次 loadView 和 viewDid ...
- scala伴生对象,apply()及单例
1:伴生对象与apply方法 如果一个class与一个object具有相同的名字,那么我们就认为它们互为伴生.object为class的伴生对象.如下图所示,object Apply为class Ap ...
- 【Longest Valid Parentheses】cpp
题目: Given a string containing just the characters '(' and ')', find the length of the longest valid ...
- adb出现unkown host advices 错误
今日在Windows DOS窗口中输入adb命令,如adb devices,adb shell等后,会出现如下错误: adb server is out of date. killing... AD ...
- 《Soft Skill》一书中的好句子
The biggest mistake that you can make is to believe that you are working for somebody else. Job secu ...
- 【转】利用TCMalloc优化Nginx的性能
From: http://www.linuxidc.com/Linux/2013-04/83197.html TCMalloc的全称是 Thread-Caching Malloc,是谷歌开发的开源工具 ...
- UVALive - 7368 Airports DAG图的最小路径覆盖
题目链接: http://acm.hust.edu.cn/vjudge/problem/356788 Airports Time Limit: 3000MS 问题描述 An airline compa ...