首先考虑序列怎么做。。。

只要把操作差分了,记录在每个点上

然后维护一棵权值线段树,表示每个颜色出现的次数,支持单点修改和查询最大值操作

只要把序列扫一遍就好了,时间复杂度$O(n + m*logZ)$,其中$n$表述序列长度,$m$表示操作次数,$Z$表示颜色集合大小

于是树形的时候,先树链剖分,然后把操作离线,对每一条链都扫一遍就好了,时间复杂度$O(n + m*logn*logZ)$

 /**************************************************************
Problem: 3307
User: rausen
Language: C++
Result: Accepted
Time:5120 ms
Memory:86068 kb
****************************************************************/ #include <cstdio>
#include <algorithm> using namespace std;
const int N = 1e5 + ;
const int Z = 1e9 + ; inline int read(); struct seg {
seg *ls, *rs;
int mx, wmx;
int tag; seg() {} #define Len (1 << 16)
inline void* operator new(size_t) {
static seg *mempool, *c;
if (mempool == c)
mempool = (c = new seg[Len]) + Len;
return c++;
}
#undef Len
inline void operator = (const seg &s) {
mx = s.mx, wmx = s.wmx;
} inline void update() {
if (!ls && !rs) this -> mx = ;
else if (!ls || !rs) *this = (ls ? *ls : *rs);
else if (ls -> mx >= rs -> mx) *this = *ls;
else *this = *rs;
}
inline void clear() {
tag = , mx = ;
}
inline void push() {
if (tag) {
if (ls) ls -> clear();
if (rs) rs -> clear();
tag = ;
}
} #define mid (l + r >> 1)
void modify(int l, int r, int pos, int d) {
if (l == r) {
mx += d, wmx = l;
return;
}
push();
if (pos <= mid) {
if (!ls) ls = new()seg;
ls -> modify(l, mid, pos, d);
} else {
if (!rs) rs = new()seg;
rs -> modify(mid + , r, pos, d);
}
update();
}
#undef mid
} *T; struct edge {
int next, to;
edge(int _n = , int _t = ) : next(_n), to(_t) {}
} e[N << ];
int first[N], tot; struct oper {
int next, z, d;
oper(int _n = , int _z = , int _d = ) : next(_n), z(_z), d(_d) {}
} op[N << ];
int First[N], tot_op; struct tree_node {
int fa, son, top;
int sz, dep;
} tr[N]; int n, m;
int ans[N]; inline void Add_Edges(int x, int y) {
e[++tot] = edge(first[x], y), first[x] = tot;
e[++tot] = edge(first[y], x), first[y] = tot;
} #define y e[x].to
void dfs(int p) {
int x;
tr[p].sz = ;
for (x = first[p]; x; x = e[x].next)
if (y != tr[p].fa) {
tr[y].fa = p, tr[y].dep = tr[p].dep + ;
dfs(y);
tr[p].sz += tr[y].sz;
if (tr[tr[p].son].sz < tr[y].sz) tr[p].son = y;
}
} void DFS(int p) {
int x;
if (!tr[p].son) return;
tr[tr[p].son].top = tr[p].top, DFS(tr[p].son);
for (x = first[p]; x; x = e[x].next)
if (y != tr[p].fa && y != tr[p].son)
tr[y].top = y, DFS(y);
}
#undef y inline void Add_oper(int x, int y, int z) {
y = tr[y].son;
op[++tot_op] = oper(First[x], z, ), First[x] = tot_op;
op[++tot_op] = oper(First[y], z, -), First[y] = tot_op;
} inline void work(int x, int y, int z) {
while (tr[x].top != tr[y].top) {
if (tr[tr[x].top].dep < tr[tr[y].top].dep) swap(x, y);
Add_oper(tr[x].top, x, z);
x = tr[tr[x].top].fa;
}
if (tr[x].dep < tr[y].dep) swap(x, y);
Add_oper(y, x, z);
} void get_ans(int p) {
int x;
for (x = First[p]; x; x = op[x].next)
T -> modify(, Z, op[x].z, op[x].d);
ans[p] = T -> mx == ? : T -> wmx;
if (tr[p].son) get_ans(tr[p].son);
} int main() {
int i, x, y, z;
n = read(), m = read();
for (i = ; i < n; ++i) Add_Edges(read(), read());
dfs();
tr[].top = , DFS();
for (i = ; i <= m; ++i) {
x = read(), y = read(), z = read();
work(x, y, z);
}
T = new()seg;
for (i = ; i <= n; ++i)
if (tr[i].top == i) {
T -> clear();
get_ans(i);
}
for (i = ; i <= n; ++i)
printf("%d\n", ans[i]);
return ;
} inline int read() {
static int x;
static char ch;
x = , ch = getchar();
while (ch < '' || '' < ch)
ch = getchar();
while ('' <= ch && ch <= '') {
x = x * + ch - '';
ch = getchar();
}
return x;
}

(p.s. 窝比较懒,所以没有把颜色离散化,直接搞了动态开点线段树)

BZOJ3307 雨天的尾巴的更多相关文章

  1. [BZOJ3307] 雨天的尾巴(树上差分+线段树合并)

    [BZOJ3307] 雨天的尾巴(树上差分+线段树合并) 题面 给出一棵N个点的树,M次操作在链上加上某一种类别的物品,完成所有操作后,要求询问每个点上最多物品的类型. N, M≤100000 分析 ...

  2. [bzoj3307]雨天的尾巴_线段树合并

    雨天的尾巴 bzoj-3307 题目大意:N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. ...

  3. BZOJ3307雨天的尾巴——线段树合并

    题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入 第一行数字N,M接下来N ...

  4. [洛谷P4556][BZOJ3307]雨天的尾巴-T3订正

    线段树合并+树上差分 题目链接(···) 「简单」「一般」——其实「一般」也只多一个离散化 考试时想法看>这里< 总思路:先存所有的操作,离散化,然后用树上差分解决修改,用权值线段树维护每 ...

  5. [BZOJ3307]:雨天的尾巴(LCA+树上差分+权值线段树)

    题目传送门 题目描述: N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入格式: 第一 ...

  6. bzoj3307 雨天的尾巴 题解(线段树合并+树上差分)

    Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y 对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成 所有发放后,每个点存放最多的是哪种物品. Input ...

  7. bzoj3307雨天的尾巴(权值线段树合并/DSU on tree)

    题目大意: 一颗树,想要在树链上添加同一物品,问最后每个点上哪个物品最多. 解题思路: 1.线段树合并 假如说物品数量少到可以暴力添加,且树点极少,我们怎么做. 首先在一个树节点上标记出哪些物品有多少 ...

  8. bzoj3307 雨天的尾巴题解及改题过程(线段树合并+lca+树上差分)

    题目描述 N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最多的是哪种物品. 输入格式 第一行数字N,M接下 ...

  9. [BZOJ3307] 雨天的尾巴-----------------线段树进阶

    虽然是个板子,但用到了差分思想. Description N个点,形成一个树状结构.有M次发放,每次选择两个点x,y对于x到y的路径上(含x,y)每个点发一袋Z类型的物品.完成所有发放后,每个点存放最 ...

随机推荐

  1. 从xubuntu-->windows xp

    捣鼓了两个月的ubuntu之后我又乖乖的回到了windows的怀抱,不是抛弃linux而是要适应身边的环境. 身边的板子的驱动基本上都是xp的老一点的还是vista的,让人情何以堪. 我努力克服了,用 ...

  2. XAF Excel数据导入模块使用说明与源码

    我实现了XAF项目中Excel数据的导入,使用Devexpress 新出的spreadsheet控件,可能也不新了吧:D 好,先看一下效果图:下图是Web版本的. 下面是win版: 功能说明: 支持从 ...

  3. RFC总结-SD模块

    1.客户主数据1.1 创建.修改客户主数据*该函数更新所有字段,X表用来新增和修改,Y表为删除  CALL FUNCTION 'SD_CUSTOMER_MAINTAIN_ALL'   EXPORTIN ...

  4. Linux_服务

    1.服务启动顺序 http://bbs.chinaunix.net/thread-1970916-1-1.html http://bbs.csdn.net/topics/240060477 2.Lin ...

  5. CentOS的包/库的找的地方

    1. http://pkgs.org/ 在这个网站里面 搜索相应的 包名,看能不能找到. 2. http://rpm.pbone.net/ 在这个网站里面 搜索相应的 包名,看能不能找到. 3.

  6. Win7_Wifi热点

    1. 怎样在Win7系统建立并开启Wifi热点 http://jingyan.baidu.com/article/48a42057a03cf7a9242504d0.html 2.

  7. 百度之星Astar2016 Round2A

    All X 等比数列求和一下 A/B MOD C = A MOD (B*C) / B  或者分治一下 Sitting in Line 状压+拓扑dp dp(i, j)表示当前二进制状态为j,当前状态的 ...

  8. @synchronized (object)使用详解

    synchronized关键字代表这个方法加锁,相当于不管哪一个线 程A每次运行到这个法时,都要检查有没有其它正在用这个方法的线程B(或者C D等),有的话要等正在使用这个方法的线程B(或者C D)运 ...

  9. oracle 生成随机数【待整理】

    http://www.cnblogs.com/ulex/p/4415478.html http://blog.sina.com.cn/s/blog_6a01140c0100wimi.html

  10. git相关资料

    Git教程http://www.liaoxuefeng.com/wiki/0013739516305929606dd18361248578c67b8067c8c017b000/git - 简明指南ht ...