Chapter 1 Introduction

1.1 What Is Machine Learning?

To solve a problem on a computer, we need an algorithm. An algorithm is a sequence of instructions that should be carried out to transform the input to output. For example, one can devise an algorithm for sorting. The input is a set of numbers and the output is their ordered list. For the same task, there may be various algorithms and we may be interested in finding the most efficient one, requiring the least number of instructions or memory or both.

For some tasks, however, we do not have an algorithm - for example, to tell spam emails from legitimate email. We know what the input is: an email document that in the simplest case is a file of characters. We know what the output should be: a yes/no output indicating whether the message is spam or not. We do not know how to transform the input to the output. What can be considered spam changes in time and from individual to individual.

What we lack in knowledge, we make up for in data. We can easily compile thousands of example messages some of which we know to be spam and what we want is to “learn” what constitutes spam from them. In other words, we would like the computer (machine) to extract automatically the algorithm for this task. There is no need to learn to sort numbers, we already have algorithms for that; but there are many applications for which we do not have an algorithm but do have example data.

With advances in computer technology, we currently have the ability to store and process large amounts of data, as well as to access it from physically distant locations over a computer network. Most data acquisition devices are digital now and record reliable data. Think, for example, of a supermarket chain that has hundreds of stores all over a country selling thousands of goods to millions of customers. The point of sale terminals record the details of each transactions: date, customer identification code, goods bought and their amount, total money spent, and so forth. This typically amounts to gigabytes of data every day. What the supermarket chain wants it to be able to predict who are the likely customers for a product. Again, the algorithm for this is not evident; it changes in time and by geographic location. The stored data becomes useful only when it is analyzed and turned into information that we can make use of, for example, to make predictions.

We may not be able to identify the process completely, but we believe we can construct a good and useful approximation. That approximation may not explain everything, but may still be able to account for some part of the data. We believe that thought identifying the complete process may not be possible, we can still detect certain patterns or regularities. This is the niche of machine learning. Such patterns may help us understand the process, or we can use those patterns to make predictions: Assuming that the future, at least the near future, will not be much different from the past when the sample data was collected, the future predictions can also be expected to be right.

Application of machine learning methods to large databases is called data mining. The analogy is that a large volume of each and raw material is extracted from a mine, which when processed leads to a small amount of very precious material; similarly, in data mining, a large volume of data is processed to construct a simple model with valuable use, for example, having high predictive accuracy. Its application areas are abundant: In addition to retail, in finance banks analyze their past data to build models to use in credit applications, fraud detection, and the stock market.

1.2.5 Reinforcement Learning

In some applications, the output of the system is a sequence of action. In such a case, a single action is not important; what is important is the policy that is the sequence of correct actions to reach the goal. There is no such thing as the best action in any intermediate state; an action is good if it is part of a good policy. In such a case, the machine learning program should be able to assess the goodness of policies and learn from past good action sequences to be able to generate a policy. Such learning methods are called reinforcement learning algorithms.

Chapter 2 Supervised Learning

We discuss supervised learning starting from the simplest case, which is learning a class from its positive and negative examples. We generalize and discuss the case of multiple classes, then regression, where the outputs are continuous.

2.1 Learning a Class from Examples

Let us say we want to learn the class, C, of a “family car”. We have a set of examples of cars, and we have a group of people that we survey to whom we show these cars. The people look at the cars and label them; the cars that they believe are family cars are positive examples, and the other cars are negative examples. Class learning is finding a description that is shared by all positive examples. Class learning is finding a description that is shared by all positive examples and none of the negative examples. Doing this, we can make a prediction: Given a car that we have not seen before, by checking with the description learned, we will be able to say whether it is a family car or not. Or we can do knowledge extraction: This study may be sponsored by a car company, and the aim may be to understand what people expect from a family car.

Chapter 3 Bayesian Decision Theory

We discuss probability theory as the framework for making decisions under uncertainty. In classification, Bayes' rule is used to calculate the probabilities of the classes. We generalize to discuss how we can make rational decisions among multiple actions to minimize expected risk. We also discuss learning association rules from data.

3.1 Introduction

Programming computers to make inference from data is a cross between statistics and computer science, where statisticians provide the mathematical framework of making inference from data and computer scientists work on the efficient implementation of the inference methods.

Data comes from a process that is not completely known. This lack of knowledge is indicated by modeling the process as a random process. Maybe the process is actually deterministic, but because we do not have access to complete knowledge about it, we model it as random and use probability theory to analyze it. At this point, it may be a good idea to jump the appendix and review basic probability theory before continuing with this chapter.

Chapter 4 Parametric Methods

Having discussed how to make optimal decisions when the uncertainty is modeled using probabilities, we now see how we can estimate these probabilities from a given training set. We start with the parametric approach for classification and regression. We discuss the semiparametric and non parametric approaches in later chapters. We introduce bias/variance dilemma and model selection methods for trading off model complexity and empirical error.

4.1 Introduction

A statistic is any value that is calculated from a given sample. In statistical inference, we make a decision using the information provided by a sample.

Introduction to Machine Learning的更多相关文章

  1. ML Lecture 0-1: Introduction of Machine Learning

    本博客是针对李宏毅教授在Youtube上上传的课程视频<ML Lecture 0-1: Introduction of Machine Learning>的学习笔记.在Github上也po ...

  2. 【Machine Learning is Fun!】1.The world’s easiest introduction to Machine Learning

    Bigger update: The content of this article is now available as a full-length video course that walks ...

  3. Introduction of Machine Learning

    李宏毅主页 台湾大学语音处理实验室 人工智慧.机器学习与深度学习间有什么区别? 人工智能——目标 机器学习——手段 深度学习——机器学习的一种方法 人类设定好的天生本能 Machine Learnin ...

  4. 李宏毅老师机器学习课程笔记_ML Lecture 0-1: Introduction of Machine Learning

    引言: 最近开始学习"机器学习",早就听说祖国宝岛的李宏毅老师的大名,一直没有时间看他的系列课程.今天听了一课,感觉非常棒,通俗易懂,而又能够抓住重点,中间还能加上一些很有趣的例子 ...

  5. Introduction To Machine Learning Self-Evaluation Test

    Preface Section 1 - Mathematical background Multivariate calculus take derivatives and integrals; de ...

  6. Machine Learning Algorithms Study Notes(1)--Introduction

    Machine Learning Algorithms Study Notes 高雪松 @雪松Cedro Microsoft MVP 目 录 1    Introduction    1 1.1    ...

  7. 【机器学习Machine Learning】资料大全

    昨天总结了深度学习的资料,今天把机器学习的资料也总结一下(友情提示:有些网站需要"科学上网"^_^) 推荐几本好书: 1.Pattern Recognition and Machi ...

  8. Machine Learning Algorithms Study Notes(6)—遗忘的数学知识

    机器学习中遗忘的数学知识 最大似然估计( Maximum likelihood ) 最大似然估计,也称为最大概似估计,是一种统计方法,它用来求一个样本集的相关概率密度函数的参数.这个方法最早是遗传学家 ...

  9. [Python & Machine Learning] 学习笔记之scikit-learn机器学习库

    1. scikit-learn介绍 scikit-learn是Python的一个开源机器学习模块,它建立在NumPy,SciPy和matplotlib模块之上.值得一提的是,scikit-learn最 ...

随机推荐

  1. python语法笔记(一)

    1. python中多个函数或者类定义可以放在一个.py 文件中,视为一个模块.模块的.py文件中,一般要写 if __name__ == '__mian__' 用来单独执行该模块内的某些函数. 2. ...

  2. iOS开发 创建单例模式

    + (id)defaultNSObjectName { static id defaultNSObjectName = nil; static BOOL token = NO; if (!token) ...

  3. Unix domain sockets

    #server: SERVER_PATH = "/tmp/python_unix_socket_server" def run_unix_domain_socket_server( ...

  4. SVN操作手册

    目 录 第1章 简介    1 第2章 SVN服务端    2 2.1 安装VisualSVN    2 2.2 VisualSVN服务    3 2.3 版本库    4 2.3.1 创建版本库   ...

  5. eclipse配置tomcat,访问http://localhost:8080出现404错误

     问题:通过eclipse来启动tomcat会碰到“访问http://localhost:8080出现404错误”这样的问题,需要在eclipse中进行一系列的设置才行. 解决:打开eclipse的s ...

  6. Java Swing事件处理机制

    Java Swing的事件处理机制 Swing GUI启动后,Java虚拟机就启动三个线程,分别为主线程,事件派发线程(也是事件处理线程)和系统工具包线程. 主线程 :负责创建并显示该程序的初始界面: ...

  7. 百度地图API首页 -- 鼠标经过:类似翻页效果和 类似锚点链接效果

    var timer; $("li").on("mouseover",function(){ clearTimeout(timer); timer=null; $ ...

  8. BliBli抢楼全攻略

    B站抢楼是一个很好玩的事情,每当新番出新集时.总有很多人想能够在前排发表评论,但是因为人数众多,往往不能如愿,今天就教大家一个抢楼的好办法. 我们平时抢楼的整个流程是这样的: 1.在官方放出的新番更新 ...

  9. Loadrunner基础:Loadrunner Controller基本概念和使用

    Loadrnner Controller 介绍 当Vuser脚本开发完成以后,可以使用Controller将这个执行脚本的用户从单用户转化为多用户,从而模拟大量用户的操作,形成负载(多用户单循环,多用 ...

  10. HDUOJ-------2493Timer(数学 2008北京现场赛H题)

    Timer Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Subm ...