题目链接:http://hihocoder.com/problemset/problem/1032

#include <bits/stdc++.h>
using namespace std; bool table[][] = {false}; string longestPalindromeDP(string s)
{
int n = s.length();
int longestBegin = ;
int maxLen = ;
memset(table,,sizeof(table));
for (int i = ; i < n; i++)
table[i][i] = true; //前期的初始化 for (int len = ; len <= n; len++)
{
for (int i = ; i < n-len+; i++)
{
int j = i+len-;
if (s[i] == s[j] && table[i+][j-])
{
table[i][j] = true;
longestBegin = i;
maxLen = len;
}
}
}
return s.substr(longestBegin, maxLen);
} int main()
{
int t;
cin>>t;
while(t--)
{
string str;
cin>>str;
string ans = longestPalindromeDP(str);
cout<<ans.length()<<endl;
}
return ;
}
#include <bits/stdc++.h>
using namespace std; const int maxn = ; char instr[maxn],str[maxn*];
int rad[maxn*]; int Manacher()
{
int i,j,maxx;
int n = strlen(instr);
memset(str,'#',sizeof(str));
for(i=;i<n;i++)
str[(i+)<<] = instr[i]; n = (n+)<<;
str[n] = '$';
int maxRad;
maxRad = j = maxx = ;
for(i = ;i<n;i++)
{
if(i<maxx)
rad[i] = min(rad[*j-i],maxx-i);
else rad[i] = ; while(str[i-rad[i]]==str[i+rad[i]])
rad[i] ++;
if(maxRad<rad[i])
maxRad = rad[i];
if(rad[i]+i>maxx)
{
j = i;
maxx = rad[i] + i;
} }
return maxRad; } int main()
{
int t;
scanf("%d",&t);
while(t--)
{
scanf("%s",instr);
printf("%d\n",Manacher()-);
}
return ;
}

先是用DP写了一下,

DP方程,就是用一个二维数组标记table[i][j] 字符串i,到j是否构成回文串,然后枚举最大长度len,

要是两端相等,并且,可以扩展,那么longestBegin = i,maxlen = len;时间复杂度还是O(n^2),并且数组都开不了。

然后就是Manacher算法:

参考:http://www.cnblogs.com/lv-2012/archive/2012/11/15/2772268.html

先扩充为两倍的字符串,rad[i]表示新的字符串第I个位置可以向左向右匹配的最大距离。求出这个rad数组,有一个结论,rad - 1就是原串对应的位置能匹配的最大长度。

那么怎么求rad数组:

求rad[i] 的时候,如果知道rad 前面的值,还有前面有个位置 ID,能够扩充的最大距离是max,

那么rad = min(rad[2*id-i],max-i);

原因:

当 mx - i > P[j] 的时候,以S[j]为中心的回文子串包含在以S[id]为中心的回文子串中,由于 i 和 j 对称,
以S[i]为中心的回文子串必然包含在以S[id]为中心的回文子串中,所以必有 P[i] = P[j],见下图。
   
  
   当 P[j] > mx - i 的时候,以S[j]为中心的回文子串不完全包含于以S[id]为中心的回文子串中,但是基于
对称性可知,下图中两个绿框所包围的部分是相同的,也就是说以S[i]为中心的回文子串,其向右至少会
扩张到mx的位置,也就是说 P[i] >= mx - i。至于mx之后的部分是否对称,就只能老老实实去匹配了。
  

hiho 第1周 最长回文子串的更多相关文章

  1. hiho一下 第一周 最长回文子串

    时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在编程的学习道路上一同前进. 这 ...

  2. hiho一下第一周 最长回文子串

    题目链接:http://hihocoder.com/contest/hiho1/problem/1 #include <iostream> #include <cstdio> ...

  3. 【hiho一下】第一周 最长回文子串

    题目1:最长回文子串 题目原文:http://hihocoder.com/contest/hiho1/problem/1 [题目解读] 题目与 POJ 3974 palindrome 基本同样.求解最 ...

  4. hihoCoder第一周---最长回文子串(1032)

    其实这就是mancher算法的板子题,贴个代码好了. 思想请见我的另一篇博客: https://blog.csdn.net/qq_41090676/article/details/86768361 # ...

  5. hihoCoder hiho一下 第一周 #1032 : 最长回文子串 (Manacher)

    题意:给一个字符串,求最长回文子串的长度. 思路: (1)暴力穷举.O(n^3) -----绝对不行. 穷举所有可能的出现子串O(n^2),再判断是否回文O(n).就是O(n*n*n)了. (2)记录 ...

  6. hiho #1032: 最长回文子串

    #1032 : 最长回文子串 时间限制:1000ms 单点时限:1000ms 内存限制:64MB 描述 小Hi和小Ho是一对好朋友,出生在信息化社会的他们对编程产生了莫大的兴趣,他们约定好互相帮助,在 ...

  7. HiHo 1032 最长回文子串 (Manacher算法求解)

    /** * 求解最长回文字串,Manacher算法o(n)求解最长回文子串问题 **/ #include<cstdio> #include<cstdlib> #include& ...

  8. 最长回文子串-LeetCode 5 Longest Palindromic Substring

    题目描述 Given a string S, find the longest palindromic substring in S. You may assume that the maximum ...

  9. 最长回文子串(Longest Palindromic Substring)

    这算是一道经典的题目了,最长回文子串问题是在一个字符串中求得满足回文子串条件的最长的那一个.常见的解题方法有三种: (1)暴力枚举法,以每个元素为中心同时向左和向右出发,复杂度O(n^2): (2)动 ...

随机推荐

  1. F面经prepare:strstr变种

    * Given an integer k>=1 and two strings A and B (length ~n each); * Figure out if there is any co ...

  2. 源码安装zabbix

    源码安装zabbix 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任.     欢迎加入:高级运维工程师之路 598432640 前言:参考网上多篇源码安装的连接,自己把安装过程丢在这 ...

  3. AIR 14 Beta - Missing builtin type Object 解决方法

    使用AIR SDK14 时候出现 Missing builtin type Object 的问题 参考 https://forums.adobe.com/thread/1483159 下载最新的Fla ...

  4. Java基础(62):Eclipse调试(Debug)的10条技巧(转)

    在看这篇文章前,我推荐你看一下Eclipse 快捷键手册 先提三点 不要使用System.out.println作为调试工具 启用所有组件的详细的日志记录级别 使用一个日志分析器来阅读日志 1.条件断 ...

  5. Openssl生成根证书、服务器证书并签核证书

    1.修改Openssl配置文件CA目录: cat /etc/pki/tls/openssl.cnf dir = /etc/pki/CA 2.生成根证书及私钥: #http://www.haiyun.m ...

  6. 17---Net基础加强

    更新中,敬请期待............ 复习 将xml显示到treeview 修改增加 删除 foreach原理 深拷贝与浅拷贝 模拟数据库及登陆 复习总结

  7. [php] How to debug PHP in the terminal

    Here I use Netbeans, xdebug to debug the PHP in the terminal of Ubuntu. 1. you have to install the x ...

  8. linux下调整音量大小

    不得不说,在linux下整音频和视频真是不容易.在windows中自带了关于音频和视频的工具,在linux下要两眼一抹黑地使用命令进行操作. 主要还是在linux下没找到合适的gui的调整工具. 几番 ...

  9. cvLoadImage函数解析 cvLoadImageM()函数

    1.函数原型:IplImage* cvLoadImage( const char* filename, int flags=CV_LOAD_IMAGE_COLOR ); filename :要被读入的 ...

  10. drupal 做301跳转(删除url里的www), 关键代码 可用到任何网站

    //hook_init(); function ex_init(){ //删除 url 前面的 www if (substr($_SERVER['HTTP_HOST'],0,3) == 'www'){ ...