bzoj3905: Square
Description
Now you’re given an N × N grid, and the cells are all black. You can paint some cells white. But other cells are broken in the sense that they cannot be paint white. For each integer i between 0 and N inclusive, you want to find the number of different painting schemes such that the beautifulness is exactly i. Two painting schemes are considered different if and only if some cells have different colors. Painting nothing is considered to be a scheme.

For example, N = 3 and there are 4 broken cells as shouwn in Fig. J(a). There are 2 painting schemes for i=2 as shown in Fig. J(b) and J(c).
You just need to output the answer modulo 10^9 + 7.
黑或者染白,对于一个棋盘,定义它的优美度为它上面最大的连续白色
子正方形的边长,对于每个0 <= i <= n,问有多少种染色方案使得棋盘的
优美度为i?
Input
For each test case, the first line contains an integer N (1 ≤ N ≤ 8), denoting the size of the grid is N × N . Then N lines follow, each line containing an N-character string of “o” and “*”, where “o” stands for a paintable cell and “*” for a broken cell.
Output
类似插头dp,f[x][y][k][S]表示当前决策到第x行第y列,到目前为止最大白色正方形大小为k,轮廓线上状态为S的方案数
具体S表示以轮廓线上每个格子为右下角的最大白色正方形大小,这样若一个格子x,y决策为白色,则S(x,y)=min(S(x-1,y),S(x-1,y-1),S(x,y-1))+1,若黑色则S(x,y)=0
#include<cstdio>
#include<queue>
#include<cstring>
#include<algorithm>
int T,n;
char s[][];
const int M=,P=;
struct map{
int x[M],y[M],s[M],sp;
map(){
memset(y,-,sizeof y);
sp=;
}
void clear(){
for(;sp;y[s[--sp]]=-);
}
int&get(int a){
int w=a%M;
while(~y[w]){
if(x[w]==a)return y[w];
if((w+=)>=M)w-=M;
}
x[w]=a;s[sp++]=w;
return y[w];
}
}_m1,_m2,*m1=&_m1,*m2=&_m2;
std::queue<int>q1,q2;
void upd(int x,int y){
int&w=m2->get(x);
if(w==-)w=,q2.push(x);
if((w+=y)>=P)w-=P;
}
void mins(int&a,int b){if(a>b)a=b;}
int ans[];
void cal(){
for(int i=;i<=n;++i)ans[i]=;
upd(,);
for(int i=;i<n;++i){
for(int j=;j<n;++j){
std::swap(q1,q2);
std::swap(m1,m2);
m2->clear();
while(!q1.empty()){
int w=q1.front();q1.pop();
int v=m1->get(w);
upd(w&~(<<j*),v);
if(s[i][j]=='o'){
int a=w>>j*&,b=w>>n*+&;
if(j)mins(a,w>>j*-&);
mins(a,w>>j*+&);
++a;
if(a<)upd((w&~(<<j*)|(a<<j*))+(a>b?<<n*+:),v);else ++ans[];
}
}
}
std::swap(q1,q2);
std::swap(m1,m2);
m2->clear();
while(!q1.empty()){
int w=q1.front();q1.pop();
int v=m1->get(w);
if(i!=n-)upd(w&(<<n*+)|(w&(<<n*)-)<<,v);
else (ans[w>>n*+]+=v)%=P;
}
}
for(int i=;i<=n;++i)printf("%d\n",ans[i]);
}
int main(){
for(scanf("%d",&T);T;--T){
scanf("%d",&n);
for(int i=;i<n;++i)scanf("%s",s[i]);
cal();
}
return ;
}
bzoj3905: Square的更多相关文章
- [LeetCode] Matchsticks to Square 火柴棍组成正方形
Remember the story of Little Match Girl? By now, you know exactly what matchsticks the little match ...
- [LeetCode] Valid Word Square 验证单词平方
Given a sequence of words, check whether it forms a valid word square. A sequence of words forms a v ...
- [LeetCode] Valid Perfect Square 检验完全平方数
Given a positive integer num, write a function which returns True if num is a perfect square else Fa ...
- [LeetCode] Maximal Square 最大正方形
Given a 2D binary matrix filled with 0's and 1's, find the largest square containing all 1's and ret ...
- OPEN CASCADE Gauss Least Square
OPEN CASCADE Gauss Least Square eryar@163.com Abstract. The least square can be used to solve a set ...
- OpenCascade Eigenvalues and Eigenvectors of Square Matrix
OpenCascade Eigenvalues and Eigenvectors of Square Matrix eryar@163.com Abstract. OpenCascade use th ...
- Leetcode: Matchsticks to Square && Grammar: reverse an primative array
Remember the story of Little Match Girl? By now, you know exactly what matchsticks the little match ...
- Leetcode: Valid Word Square
Given a sequence of words, check whether it forms a valid word square. A sequence of words forms a v ...
- Modified Least Square Method and Ransan Method to Fit Circle from Data
In OpenCv, it only provide the function fitEllipse to fit Ellipse, but doesn't provide function to f ...
随机推荐
- USB协议-USB的包结构及包的分类
USB是串行总线,所以数据是一位一位地在数据线上传送的.既然是一位一位地传送,就存在着一个数据位先后的问题.USB使用的是LSB在前的方式,即先出来的是最低位数据,接下来是次低位,最后是最高位(MSB ...
- thrift在windows的编译/安装--c++版
前言: thrift是出于Facebook的rpc网络编程框架, 其对跨平台和多语言的支持优于google protobuf, 但thrift在java/c#语言上应用比较多, 资料也丰富, 在win ...
- Bootstrap部分---环境安装及一个可视化的布局;
一:环境安装*****顺序不可变***** <head> 如果需要可以设定,移动设备优先 <meta name="viewport" content=" ...
- [转] JAVA网站高并发解决方案
http://blog.csdn.net/herrapfel/article/details/9630911
- 无shell情况下的mysql远程mof提权利用方法详解
扫到一个站的注入<ignore_js_op> 在havij中得到mysql数据库中mysql库保存的数据库密码:<ignore_js_op> 有时候发现1.15版的还是最好用, ...
- weblogic管理1——创建 和 删除一个domain
说明本文环境 WLS_HOME=/home/weblogic/Oracle/Middleware创建一个domian 第一种方法通过console 创建>[weblogic@11g Mid ...
- Unity3D的杂记
刷新帧的不同控制函数 FixedUpdate 可以多次调用: 不饿能用于帧频很高的情况: Update 仅一次调用(每帧): LateUpdate 每帧调用一次: Corountine 用startC ...
- com.sun.crypto.provider.SunJCE
Could not instantiate bean class [com.lz.monitor.alert.service.ServiceImp]: Constructor threw except ...
- 008. asp.net mvc3.0安装文件及其安装时发生错误的解决方案
0. 安装步骤: vs2010 → vs2010sp1→ AspNetMVC3Setup.exe→ AspNetMVC3Setup_CHS.exe→ AspNetMVC3ToolsUpdateSetu ...
- HTML相对路径 当前目录、上级目录、根目录、下级目录表示法
文件引用时经常需要用到相对目录.如(js,css,图片等) "./" --------- 源代码所在的当前目录(可省略) "../" ----- ...