【BZOJ】【1019】【SHOI2008】汉诺塔
递推/DP
类似普通汉诺塔的一个递推(模拟?$10^{18}$没法模拟吧……
题解:http://blog.csdn.net/regina8023/article/details/43016813
因为转移的优先顺序,所以到达每一个目标的转移过程是一定的。
考虑dp方程:
f[x][i]表示第x个柱子上有i个盘子,把他们都移动到g[x][i]这个柱子上要花得步数。
首先考虑i=1,因为操作有优先顺序,因此g[x][1]可以确定,f[x][1]都是1。
接下来考虑任意的i,那么我们需要把i-1个移动到g[x][i-1]上面去,再把剩下的一个移动到(1+2+3-x-g[x][i-1])上。
现在原来在x上的i个处在的两个柱子上,其中一个放了1个盘子,另一个放了i-1个盘子。
设g[x][i-1]=y,即i-1个盘子所在的柱子是y;1+2+3-x-g[x][i-1]=k,即一个盘所在的柱子是k。
分两种情况讨论:
(1)若g[y][i-1]=k,那么把这i-1个直接移到k上转移就完成了。
g[x][i]=k f[x][i]=f[x][i-1]+1+f[y][i-1]
(2)若g[y][i-1]=x,这种情况要麻烦一些:
把i-1个从y移动到x上,再把1个从k移动到y上,最后把i-1个从x上移动到y上。
g[x][i]=y f[x][i]=f[x][i-1]+1+f[y][i-1]+1+f[x][i-1]
/**************************************************************
Problem: 1019
User: Tunix
Language: C++
Result: Accepted
Time:0 ms
Memory:808 kb
****************************************************************/ //BZOJ 1019
#include<cstdio>
#define F(i,j,n) for(int i=j;i<=n;++i)
using namespace std;
typedef long long LL;
/******************tamplate*********************/
LL f[][];
int g[][];
bool v[];
int main(){
int n; scanf("%d",&n);
F(i,,){
char s[];
scanf("%s",s);
int from=s[]-'A'+,to=s[]-'A'+;
if (v[from]) continue;
v[from]=;
g[from][]=to; f[from][]=;
}
F(i,,n) F(j,,){
int y=g[j][i-];
int k=-y-j;
f[j][i]=f[j][i-]+;
if (k==g[y][i-]){
f[j][i]+=f[y][i-];
g[j][i]=k;
}else{
f[j][i]+=f[y][i-]++f[j][i-];
g[j][i]=y;
}
}
printf("%lld\n",f[][n]);
return ;
}
1019: [SHOI2008]汉诺塔
Time Limit: 1 Sec Memory Limit: 162 MB
Submit: 992 Solved: 613
[Submit][Status][Discuss]
Description
汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成。一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一个塔状的锥形体。

对汉诺塔的一次合法的操作是指:从一根柱子的最上层拿一个盘子放到另一根柱子的最上层,同时要保证被移动的盘子一定放在比它更大的盘子上面(如果移
动到空柱子上就不需要满足这个要求)。我们可以用两个字母来描述一次操作:第一个字母代表起始柱子,第二个字母代表目标柱子。例如,AB就是把柱子A最上
面的那个盘子移到柱子B。汉诺塔的游戏目标是将所有的盘子从柱子A移动到柱子B或柱子C上面。有一种非常简洁而经典的策略可以帮助我们完成这个游戏。首
先,在任何操作执行之前,我们以任意的次序为六种操作(AB、AC、BA、BC、CA和CB)赋予不同的优先级,然后,我们总是选择符合以下两个条件的操
作来移动盘子,直到所有的盘子都从柱子A移动到另一根柱子:(1)这种操作是所有合法操作中优先级最高的;(2)这种操作所要移动的盘子不是上一次操作所
移动的那个盘子。可以证明,上述策略一定能完成汉诺塔游戏。现在你的任务就是假设给定了每种操作的优先级,计算按照上述策略操作汉诺塔移动所需要的步骤
数。
Input
输入有两行。第一行为一个整数n(1≤n≤30),代表盘子的个数。第二行是一串大写的ABC字符,代表六种操作的优先级,靠前的操作具有较高的优先级。每种操作都由一个空格隔开。
Output
只需输出一个数,这个数表示移动的次数。我们保证答案不会超过10的18次方。
Sample Input
AB BC CA BA CB AC
Sample Output
HINT
Source
【BZOJ】【1019】【SHOI2008】汉诺塔的更多相关文章
- BZOJ 1019: [SHOI2008]汉诺塔( dp )
dp(x, y)表示第x根柱子上y个盘子移开后到哪根柱子以及花费步数..然后根据汉诺塔原理去转移... ------------------------------------------------ ...
- BZOJ 1019: [SHOI2008]汉诺塔
Description 一个汉诺塔,给出了移动的优先顺序,问从A移到按照规则移到另一个柱子上的最少步数. 规则:小的在大的上面,每次不能移动上一次移动的,选择可行的优先级最高的. Sol DP. 倒着 ...
- BZOJ 1019 :[SHOI2008]汉诺塔(递推)
好吧蒟蒻还是看题解的 其实看到汉诺塔就该想到是递推了 设f[i][j]表示i个在j杆转移到另一个杆的次数 g[i][j]表示i个在j杆转移到那个杆上 可得 f[i][j]=f[i-1][j]+1+f[ ...
- 【BZOJ 1019】 1019: [SHOI2008]汉诺塔 (DP?)
1019: [SHOI2008]汉诺塔 Description 汉诺塔由三根柱子(分别用A B C表示)和n个大小互不相同的空心盘子组成.一开始n个盘子都摞在柱子A上,大的在下面,小的在上面,形成了一 ...
- 1019: [SHOI2008]汉诺塔
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1495 Solved: 916[Submit][Status] ...
- 【BZOJ】1019: [SHOI2008]汉诺塔
http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题意:汉诺塔规则,只不过盘子n<=30,终点在B柱或C柱,每一次移动要遵守规则:1.小的 ...
- bzoj千题计划109:bzoj1019: [SHOI2008]汉诺塔
http://www.lydsy.com/JudgeOnline/problem.php?id=1019 题目中问步骤数,没说最少 可以大胆猜测移动方案唯一 (真的是唯一但不会证) 设f[i][j] ...
- bzoj1019 [SHOI2008]汉诺塔
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1030 Solved: 638[Submit][Status] ...
- 【bzoj1019】[SHOI2008]汉诺塔
1019: [SHOI2008]汉诺塔 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 1427 Solved: 872[Submit][Status] ...
- bzoj1019: [SHOI2008]汉诺塔(动态规划)
1019: [SHOI2008]汉诺塔 题目:传送门 简要题意: 和经典的汉诺塔问题区别不大,但是题目规定了一个移动时的优先级: 如果当前要从A柱子移动,但是A到C的优先级比A到B的优先级大的话,那就 ...
随机推荐
- html5制作一个时钟
试着用html5写一个时钟 记得开始这个随笔是几天前,一直保存在草稿里面,一直感觉有个东西搁在在那里,所以今天熬夜也要写完这篇博客!!!哈哈...不多说来上代码和思路. --------------- ...
- javascript回车完美实现tab切换功能
javascript通过回车实现tab切换功能,最经有一个项目是给化工厂做的在使用的过程中需要输入大量的数据,使用的都是小键盘区,在以前都是通过excel录入数据的现在, 在网页上需要实现excel ...
- 自定义获取html元素对象的7种方法。
- C# 标准查询表达式
一.标准查询运算符 1.C#提供了标准查询运算符,例如我想选择专利一系列(pantents)中以年份19开头的专利,可以用如下语句: IEnumerable<Patent> pantent ...
- 在一般处理程序中,把Form Post过来的表单集合转换成对象 ,仿 MVC post,反射原理
using System; using System.Collections.Generic; using System.Collections.Specialized; using System.L ...
- 008-python基础-数据类型
一.基本数据类型: 数字 int 字符串 str 布尔值 bool 真或假 1或0 列表 list 元组 tuple (不可变列表) 字典 dict (无序)
- 转:javascript 中select的取值
javascript获取select的值全解 获取显示的汉字 document.getElementById("bigclass").options[window.document ...
- TETRIS 项目开发笔记
java学习一个月了,没有什么进展,期间又是复习Linux,又是看Android,瞻前顾后,感觉自己真的是贪得无厌, 学习的东西广而不精,所以写出的文章也就只能泛泛而谈.五一小长假,哪里都没有去,也不 ...
- AppCan移动平台开发常见问题解答
在使用AppCan移动平台开发跨平台APP时,有开发者会遇到一些问题, 不急,跟笔者一起来聊一聊使用AppCan平台开发中常见问题的解答方法. 问1.正常是按照官网提供的4个iphone启动图尺寸来做 ...
- linux安装ruby
可以使用 sudo apt-get install ruby 的方式安装,但一般这种方式安装的版本比较旧.另外也可以用以下方式安装新的版本. 1. 首先更新软件源,使用国内的.参考:http://wi ...